{"title":"共刺激分子作为系统性红斑狼疮的免疫治疗靶点。","authors":"Juergen Foell, Robert S Mittler","doi":"10.1007/s00281-006-0039-y","DOIUrl":null,"url":null,"abstract":"<p><p>T cells undergo full and productive activation when they traffic to lymph nodes where they encounter dendritic cells displaying foreign antigen in the context of MHC molecules on their surface. Recognition of these antigen-MHC complexes by the T cell's receptor for antigen, or T cell receptor, provides the first of two obligate signals needed to drive cell proliferation. The second antigen-independent signal is provided by the costimulatory receptor, CD28, as it engages its ligand on the antigen-presenting cells. Failure of the T cell to receive this second signal after antigen recognition leaves the T cell in a state of anergy. Understanding the role of T cell costimulatory receptors in T cell activation has led to the development of novel approaches for regulating immune responses in subjects with cancer or autoimmune disease by experimentally triggering or blocking costimulatory receptor signaling. In this review, we will discuss, first, several costimulatory pathways known to participate or regulate the progression of autoimmune disease, and, second, how manipulation of T cell costimulation and/or costimulation blockade has been used to treat systemic lupus erythematosus.</p>","PeriodicalId":74860,"journal":{"name":"Springer seminars in immunopathology","volume":"28 2","pages":"153-62"},"PeriodicalIF":0.0000,"publicationDate":"2006-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s00281-006-0039-y","citationCount":"6","resultStr":"{\"title\":\"Costimulatory molecules as immunotherapeutic targets in systemic lupus erythematosus.\",\"authors\":\"Juergen Foell, Robert S Mittler\",\"doi\":\"10.1007/s00281-006-0039-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>T cells undergo full and productive activation when they traffic to lymph nodes where they encounter dendritic cells displaying foreign antigen in the context of MHC molecules on their surface. Recognition of these antigen-MHC complexes by the T cell's receptor for antigen, or T cell receptor, provides the first of two obligate signals needed to drive cell proliferation. The second antigen-independent signal is provided by the costimulatory receptor, CD28, as it engages its ligand on the antigen-presenting cells. Failure of the T cell to receive this second signal after antigen recognition leaves the T cell in a state of anergy. Understanding the role of T cell costimulatory receptors in T cell activation has led to the development of novel approaches for regulating immune responses in subjects with cancer or autoimmune disease by experimentally triggering or blocking costimulatory receptor signaling. In this review, we will discuss, first, several costimulatory pathways known to participate or regulate the progression of autoimmune disease, and, second, how manipulation of T cell costimulation and/or costimulation blockade has been used to treat systemic lupus erythematosus.</p>\",\"PeriodicalId\":74860,\"journal\":{\"name\":\"Springer seminars in immunopathology\",\"volume\":\"28 2\",\"pages\":\"153-62\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s00281-006-0039-y\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Springer seminars in immunopathology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s00281-006-0039-y\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2006/9/2 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Springer seminars in immunopathology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00281-006-0039-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2006/9/2 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
Costimulatory molecules as immunotherapeutic targets in systemic lupus erythematosus.
T cells undergo full and productive activation when they traffic to lymph nodes where they encounter dendritic cells displaying foreign antigen in the context of MHC molecules on their surface. Recognition of these antigen-MHC complexes by the T cell's receptor for antigen, or T cell receptor, provides the first of two obligate signals needed to drive cell proliferation. The second antigen-independent signal is provided by the costimulatory receptor, CD28, as it engages its ligand on the antigen-presenting cells. Failure of the T cell to receive this second signal after antigen recognition leaves the T cell in a state of anergy. Understanding the role of T cell costimulatory receptors in T cell activation has led to the development of novel approaches for regulating immune responses in subjects with cancer or autoimmune disease by experimentally triggering or blocking costimulatory receptor signaling. In this review, we will discuss, first, several costimulatory pathways known to participate or regulate the progression of autoimmune disease, and, second, how manipulation of T cell costimulation and/or costimulation blockade has been used to treat systemic lupus erythematosus.