下一代热等离子体技术和光电子领域的等离子体纳米粒子

IF 7.4 1区 物理与天体物理 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Luciano De Sio , Tiziana Placido , Roberto Comparelli , M. Lucia Curri , Marinella Striccoli , Nelson Tabiryan , Timothy J. Bunning
{"title":"下一代热等离子体技术和光电子领域的等离子体纳米粒子","authors":"Luciano De Sio ,&nbsp;Tiziana Placido ,&nbsp;Roberto Comparelli ,&nbsp;M. Lucia Curri ,&nbsp;Marinella Striccoli ,&nbsp;Nelson Tabiryan ,&nbsp;Timothy J. Bunning","doi":"10.1016/j.pquantelec.2015.03.001","DOIUrl":null,"url":null,"abstract":"<div><p>Controlling light interactions with matter on the nanometer scale provides for compelling opportunities for modern technology and stretches our understanding and exploitation of applied physics, electronics, and fabrication science. The smallest size to which light can be confined using standard optical elements such as lenses and mirrors is limited by diffraction. Plasmonic nanostructures have the extraordinary capability to control light beyond the diffraction limit through an unique phenomenon called the localized plasmon resonance. This remarkable capability enables unique prospects for the design, fabrication and characterization of highly integrated photonic signal-processing systems, nanoresolution optical imaging techniques and nanoscale electronic circuits. This paper summarizes the basic principles and the main achievements in the practical utilization of plasmonic effects in nanoparticles. Specifically, the paper aims at highlighting the major contributions of nanoparticles to nanoscale temperature monitoring, modern “drug free” medicine and the application of nanomaterials to a new generation of opto-electronics integrated circuits.</p></div>","PeriodicalId":414,"journal":{"name":"Progress in Quantum Electronics","volume":"41 ","pages":"Pages 23-70"},"PeriodicalIF":7.4000,"publicationDate":"2015-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.pquantelec.2015.03.001","citationCount":"58","resultStr":"{\"title\":\"Next-generation thermo-plasmonic technologies and plasmonic nanoparticles in optoelectronics\",\"authors\":\"Luciano De Sio ,&nbsp;Tiziana Placido ,&nbsp;Roberto Comparelli ,&nbsp;M. Lucia Curri ,&nbsp;Marinella Striccoli ,&nbsp;Nelson Tabiryan ,&nbsp;Timothy J. Bunning\",\"doi\":\"10.1016/j.pquantelec.2015.03.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Controlling light interactions with matter on the nanometer scale provides for compelling opportunities for modern technology and stretches our understanding and exploitation of applied physics, electronics, and fabrication science. The smallest size to which light can be confined using standard optical elements such as lenses and mirrors is limited by diffraction. Plasmonic nanostructures have the extraordinary capability to control light beyond the diffraction limit through an unique phenomenon called the localized plasmon resonance. This remarkable capability enables unique prospects for the design, fabrication and characterization of highly integrated photonic signal-processing systems, nanoresolution optical imaging techniques and nanoscale electronic circuits. This paper summarizes the basic principles and the main achievements in the practical utilization of plasmonic effects in nanoparticles. Specifically, the paper aims at highlighting the major contributions of nanoparticles to nanoscale temperature monitoring, modern “drug free” medicine and the application of nanomaterials to a new generation of opto-electronics integrated circuits.</p></div>\",\"PeriodicalId\":414,\"journal\":{\"name\":\"Progress in Quantum Electronics\",\"volume\":\"41 \",\"pages\":\"Pages 23-70\"},\"PeriodicalIF\":7.4000,\"publicationDate\":\"2015-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.pquantelec.2015.03.001\",\"citationCount\":\"58\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Quantum Electronics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0079672715000178\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Quantum Electronics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0079672715000178","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 58

摘要

在纳米尺度上控制光与物质的相互作用为现代技术提供了令人信服的机会,并扩展了我们对应用物理学、电子学和制造科学的理解和利用。标准光学元件如透镜和反射镜所能限制的光的最小尺寸受到衍射的限制。等离子体纳米结构具有非凡的能力,通过一种称为局部等离子体共振的独特现象来控制超过衍射极限的光。这种卓越的能力为高度集成的光子信号处理系统、纳米分辨率光学成像技术和纳米级电子电路的设计、制造和表征提供了独特的前景。本文综述了纳米粒子等离子体效应的基本原理和在实际应用中取得的主要成果。具体而言,本文旨在突出纳米颗粒在纳米尺度温度监测,现代“无药”医学以及纳米材料在新一代光电集成电路中的应用方面的主要贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Next-generation thermo-plasmonic technologies and plasmonic nanoparticles in optoelectronics

Controlling light interactions with matter on the nanometer scale provides for compelling opportunities for modern technology and stretches our understanding and exploitation of applied physics, electronics, and fabrication science. The smallest size to which light can be confined using standard optical elements such as lenses and mirrors is limited by diffraction. Plasmonic nanostructures have the extraordinary capability to control light beyond the diffraction limit through an unique phenomenon called the localized plasmon resonance. This remarkable capability enables unique prospects for the design, fabrication and characterization of highly integrated photonic signal-processing systems, nanoresolution optical imaging techniques and nanoscale electronic circuits. This paper summarizes the basic principles and the main achievements in the practical utilization of plasmonic effects in nanoparticles. Specifically, the paper aims at highlighting the major contributions of nanoparticles to nanoscale temperature monitoring, modern “drug free” medicine and the application of nanomaterials to a new generation of opto-electronics integrated circuits.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Progress in Quantum Electronics
Progress in Quantum Electronics 工程技术-工程:电子与电气
CiteScore
18.50
自引率
0.00%
发文量
23
审稿时长
150 days
期刊介绍: Progress in Quantum Electronics, established in 1969, is an esteemed international review journal dedicated to sharing cutting-edge topics in quantum electronics and its applications. The journal disseminates papers covering theoretical and experimental aspects of contemporary research, including advances in physics, technology, and engineering relevant to quantum electronics. It also encourages interdisciplinary research, welcoming papers that contribute new knowledge in areas such as bio and nano-related work.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信