{"title":"等离子体纳米粒子光吸收剂的设计与实现","authors":"Ludovic Escoubas , Miriam Carlberg , Judikael Le Rouzo , Florent Pourcin , Jorg Ackermann , Olivier Margeat , Clement Reynaud , David Duche , Jean-Jacques Simon , Rose-Marie Sauvage , Gérard Berginc","doi":"10.1016/j.pquantelec.2018.12.001","DOIUrl":null,"url":null,"abstract":"<div><p><span>The applications of light absorbers concern photodetectors<span>, optical filters, solar applications or flexible electronics. In this review, we will detail the application of such light absorbers and we will develop the main demonstrations of the use of metallic </span></span>nanoparticles<span><span><span> embedded within a host matrix to fabricate coatings aiming at harvesting light. We will explain how chemically synthetized silver nanoparticles of various shapes (spheres, cubes, …) and sizes allow controlling the </span>optical properties<span> of heterogeneous thin film layers. By coupling the optical characterizations with computer modeling, we will describe how the nanoparticles behave both individually and collectively. To control reflected and absorbed light by thin film layers containing nanoparticles several points have to be addressed: the relation between the shape of the nanoparticle and the </span></span>absorptance of the layer, the interaction of light between nanoparticles and the collective behavior of aggregates.</span></p></div>","PeriodicalId":414,"journal":{"name":"Progress in Quantum Electronics","volume":"63 ","pages":"Pages 1-22"},"PeriodicalIF":7.4000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.pquantelec.2018.12.001","citationCount":"26","resultStr":"{\"title\":\"Design and realization of light absorbers using plasmonic nanoparticles\",\"authors\":\"Ludovic Escoubas , Miriam Carlberg , Judikael Le Rouzo , Florent Pourcin , Jorg Ackermann , Olivier Margeat , Clement Reynaud , David Duche , Jean-Jacques Simon , Rose-Marie Sauvage , Gérard Berginc\",\"doi\":\"10.1016/j.pquantelec.2018.12.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>The applications of light absorbers concern photodetectors<span>, optical filters, solar applications or flexible electronics. In this review, we will detail the application of such light absorbers and we will develop the main demonstrations of the use of metallic </span></span>nanoparticles<span><span><span> embedded within a host matrix to fabricate coatings aiming at harvesting light. We will explain how chemically synthetized silver nanoparticles of various shapes (spheres, cubes, …) and sizes allow controlling the </span>optical properties<span> of heterogeneous thin film layers. By coupling the optical characterizations with computer modeling, we will describe how the nanoparticles behave both individually and collectively. To control reflected and absorbed light by thin film layers containing nanoparticles several points have to be addressed: the relation between the shape of the nanoparticle and the </span></span>absorptance of the layer, the interaction of light between nanoparticles and the collective behavior of aggregates.</span></p></div>\",\"PeriodicalId\":414,\"journal\":{\"name\":\"Progress in Quantum Electronics\",\"volume\":\"63 \",\"pages\":\"Pages 1-22\"},\"PeriodicalIF\":7.4000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.pquantelec.2018.12.001\",\"citationCount\":\"26\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Quantum Electronics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0079672718300521\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Quantum Electronics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0079672718300521","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Design and realization of light absorbers using plasmonic nanoparticles
The applications of light absorbers concern photodetectors, optical filters, solar applications or flexible electronics. In this review, we will detail the application of such light absorbers and we will develop the main demonstrations of the use of metallic nanoparticles embedded within a host matrix to fabricate coatings aiming at harvesting light. We will explain how chemically synthetized silver nanoparticles of various shapes (spheres, cubes, …) and sizes allow controlling the optical properties of heterogeneous thin film layers. By coupling the optical characterizations with computer modeling, we will describe how the nanoparticles behave both individually and collectively. To control reflected and absorbed light by thin film layers containing nanoparticles several points have to be addressed: the relation between the shape of the nanoparticle and the absorptance of the layer, the interaction of light between nanoparticles and the collective behavior of aggregates.
期刊介绍:
Progress in Quantum Electronics, established in 1969, is an esteemed international review journal dedicated to sharing cutting-edge topics in quantum electronics and its applications. The journal disseminates papers covering theoretical and experimental aspects of contemporary research, including advances in physics, technology, and engineering relevant to quantum electronics. It also encourages interdisciplinary research, welcoming papers that contribute new knowledge in areas such as bio and nano-related work.