基于弱分子相互作用的水下软胶粘剂

IF 26 1区 化学 Q1 POLYMER SCIENCE
Mehdi Vahdati , Dominique Hourdet , Costantino Creton
{"title":"基于弱分子相互作用的水下软胶粘剂","authors":"Mehdi Vahdati ,&nbsp;Dominique Hourdet ,&nbsp;Costantino Creton","doi":"10.1016/j.progpolymsci.2023.101649","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>Underwater adhesion has been the focus of many recent developments motivated by potential biomedical applications. Although most literature on underwater adhesives has focused on strong covalent chemistries, soft materials based on weak molecular interactions have gained interest. Instead of relying on potentially toxic chemical crosslinking reactions to form </span>covalent bonds<span><span>, these materials are often sticky due to their soft, viscoelastic nature, in a similar manner to soft hydrophobic Pressure-Sensitive Adhesives (PSAs). In this review, we critically discuss the state-of-the-art in the design and characterization of soft viscoelastic coacervates and gels based on specific weak molecular interactions for underwater adhesion. From the perspectives of materials science and mechanics, we investigate the relationships between the composition and structure of these materials and their underwater viscoelastic and </span>adhesive properties. An originality of our review lies in the analogies and comparisons we draw with PSAs as well-understood </span></span><em>hydrophobic</em> self-adhesive counterparts of the <em>relatively hydrophilic underwater adhesives</em> discussed here. Considering current literature, a criterion has been proposed to distinguish <em>hydrophilic</em> and <em>hydrophobic</em> adhesives. The insights from this review are condensed into detailed guidelines for the design of future soft underwater adhesives. We conclude the review with important open questions and the perspectives of the field.</p></div>","PeriodicalId":413,"journal":{"name":"Progress in Polymer Science","volume":"139 ","pages":"Article 101649"},"PeriodicalIF":26.0000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Soft underwater adhesives based on weak molecular interactions\",\"authors\":\"Mehdi Vahdati ,&nbsp;Dominique Hourdet ,&nbsp;Costantino Creton\",\"doi\":\"10.1016/j.progpolymsci.2023.101649\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span><span>Underwater adhesion has been the focus of many recent developments motivated by potential biomedical applications. Although most literature on underwater adhesives has focused on strong covalent chemistries, soft materials based on weak molecular interactions have gained interest. Instead of relying on potentially toxic chemical crosslinking reactions to form </span>covalent bonds<span><span>, these materials are often sticky due to their soft, viscoelastic nature, in a similar manner to soft hydrophobic Pressure-Sensitive Adhesives (PSAs). In this review, we critically discuss the state-of-the-art in the design and characterization of soft viscoelastic coacervates and gels based on specific weak molecular interactions for underwater adhesion. From the perspectives of materials science and mechanics, we investigate the relationships between the composition and structure of these materials and their underwater viscoelastic and </span>adhesive properties. An originality of our review lies in the analogies and comparisons we draw with PSAs as well-understood </span></span><em>hydrophobic</em> self-adhesive counterparts of the <em>relatively hydrophilic underwater adhesives</em> discussed here. Considering current literature, a criterion has been proposed to distinguish <em>hydrophilic</em> and <em>hydrophobic</em> adhesives. The insights from this review are condensed into detailed guidelines for the design of future soft underwater adhesives. We conclude the review with important open questions and the perspectives of the field.</p></div>\",\"PeriodicalId\":413,\"journal\":{\"name\":\"Progress in Polymer Science\",\"volume\":\"139 \",\"pages\":\"Article 101649\"},\"PeriodicalIF\":26.0000,\"publicationDate\":\"2023-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Polymer Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0079670023000047\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Polymer Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0079670023000047","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 6

摘要

由于潜在的生物医学应用,水下粘附已成为最近许多发展的焦点。尽管大多数关于水下粘合剂的文献都集中在强共价化学上,但基于弱分子相互作用的软材料已经引起了人们的兴趣。这些材料不是依靠潜在有毒的化学交联反应来形成共价键,而是由于其柔软、粘弹性的性质而具有粘性,类似于软疏水压敏粘合剂(psa)。在这篇综述中,我们批判性地讨论了基于水下粘附的特定弱分子相互作用的软粘弹性凝聚体和凝胶的设计和表征的最新进展。从材料科学和力学的角度,研究了这些材料的组成和结构与其水下粘弹性和粘接性能的关系。我们的评论的一个独创性在于类比和比较,我们得出的psa是很好理解的疏水自粘对应物相对亲水的水下胶粘剂讨论。考虑到目前的文献,已经提出了一个标准来区分亲水性和疏水性粘合剂。从这篇综述的见解浓缩成详细的指导方针,为未来的软水下胶粘剂的设计。我们总结了重要的开放性问题和该领域的观点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Soft underwater adhesives based on weak molecular interactions

Soft underwater adhesives based on weak molecular interactions

Underwater adhesion has been the focus of many recent developments motivated by potential biomedical applications. Although most literature on underwater adhesives has focused on strong covalent chemistries, soft materials based on weak molecular interactions have gained interest. Instead of relying on potentially toxic chemical crosslinking reactions to form covalent bonds, these materials are often sticky due to their soft, viscoelastic nature, in a similar manner to soft hydrophobic Pressure-Sensitive Adhesives (PSAs). In this review, we critically discuss the state-of-the-art in the design and characterization of soft viscoelastic coacervates and gels based on specific weak molecular interactions for underwater adhesion. From the perspectives of materials science and mechanics, we investigate the relationships between the composition and structure of these materials and their underwater viscoelastic and adhesive properties. An originality of our review lies in the analogies and comparisons we draw with PSAs as well-understood hydrophobic self-adhesive counterparts of the relatively hydrophilic underwater adhesives discussed here. Considering current literature, a criterion has been proposed to distinguish hydrophilic and hydrophobic adhesives. The insights from this review are condensed into detailed guidelines for the design of future soft underwater adhesives. We conclude the review with important open questions and the perspectives of the field.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Progress in Polymer Science
Progress in Polymer Science 化学-高分子科学
CiteScore
48.70
自引率
1.10%
发文量
54
审稿时长
38 days
期刊介绍: Progress in Polymer Science is a journal that publishes state-of-the-art overview articles in the field of polymer science and engineering. These articles are written by internationally recognized authorities in the discipline, making it a valuable resource for staying up-to-date with the latest developments in this rapidly growing field. The journal serves as a link between original articles, innovations published in patents, and the most current knowledge of technology. It covers a wide range of topics within the traditional fields of polymer science, including chemistry, physics, and engineering involving polymers. Additionally, it explores interdisciplinary developing fields such as functional and specialty polymers, biomaterials, polymers in drug delivery, polymers in electronic applications, composites, conducting polymers, liquid crystalline materials, and the interphases between polymers and ceramics. The journal also highlights new fabrication techniques that are making significant contributions to the field. The subject areas covered by Progress in Polymer Science include biomaterials, materials chemistry, organic chemistry, polymers and plastics, surfaces, coatings and films, and nanotechnology. The journal is indexed and abstracted in various databases, including Materials Science Citation Index, Chemical Abstracts, Engineering Index, Current Contents, FIZ Karlsruhe, Scopus, and INSPEC.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信