WU Xue-Qiong , LU Yang , ZHANG Jun-Xian , LIANG Jian-Qin , ZHANG Guang-Yu , LI Hong-Min , LÜ Cui-Huan , DING Bei-Chuan
{"title":"应用四种分子方法检测中国结核分枝杆菌临床分离株链霉素耐药性","authors":"WU Xue-Qiong , LU Yang , ZHANG Jun-Xian , LIANG Jian-Qin , ZHANG Guang-Yu , LI Hong-Min , LÜ Cui-Huan , DING Bei-Chuan","doi":"10.1016/S0379-4172(06)60096-6","DOIUrl":null,"url":null,"abstract":"<div><p>To evaluate the relationship between mutations in <em>rpsL</em> or <em>rrs</em> genes and streptomycin (SM) resistance, we compared four molecular methods for their clinical value in the detection of SM resistance. Genotypic analysis of SM resistance in 167 <em>M. tuberculosis</em> clinical strains isolated from Chinese patients was performed by direct DNA sequencing, SSCP, RFLP, and reverse dot-blot hybridization (RDBH) assays. Of the 98 SM-resistant isolates, 78 (79.6%) had missense mutations in codon 43 or 88 of <em>rpsL</em> resulting in a Lys to Arg substitution, 6 (6.1%) had mutations of the <em>rrs</em> gene at positions 513 A to C or T or 516 C to T, and 14 (14.3%) had the wild-type sequence. None of the 69 SM-susceptible isolates examined had alterations in <em>rpsL</em> or <em>rrs</em>. The results of the SSCP, RFLP, and RDBH analyses for these mutations and wild-type sequences were completely consistent with DNA sequencing data. Five distinct single-nucleotide substitutions in codon 43 or 88 of <em>rpsL</em> gene or in position 513 or 516 of <em>rrs</em> gene were correctly identified in 84 of 98 (85.7%) phenotypically SM-resistant isolates by RDBH assay. Molecular analyses of the <em>rpsL</em> and <em>rrs</em> genes are useful for rapid prediction of SM resistance in most clinical strains of <em>M. tuberculosis.</em> Reverse dot-blot hybridization assay is a rapid, simple, and reliable method for the detection of drug resistance.</p></div>","PeriodicalId":100017,"journal":{"name":"Acta Genetica Sinica","volume":"33 7","pages":"Pages 655-663"},"PeriodicalIF":0.0000,"publicationDate":"2006-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0379-4172(06)60096-6","citationCount":"13","resultStr":"{\"title\":\"Detection of Streptomycin Resistance in Mycobacterium tuberculosis Clinical Isolates Using Four Molecular Methods in China\",\"authors\":\"WU Xue-Qiong , LU Yang , ZHANG Jun-Xian , LIANG Jian-Qin , ZHANG Guang-Yu , LI Hong-Min , LÜ Cui-Huan , DING Bei-Chuan\",\"doi\":\"10.1016/S0379-4172(06)60096-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>To evaluate the relationship between mutations in <em>rpsL</em> or <em>rrs</em> genes and streptomycin (SM) resistance, we compared four molecular methods for their clinical value in the detection of SM resistance. Genotypic analysis of SM resistance in 167 <em>M. tuberculosis</em> clinical strains isolated from Chinese patients was performed by direct DNA sequencing, SSCP, RFLP, and reverse dot-blot hybridization (RDBH) assays. Of the 98 SM-resistant isolates, 78 (79.6%) had missense mutations in codon 43 or 88 of <em>rpsL</em> resulting in a Lys to Arg substitution, 6 (6.1%) had mutations of the <em>rrs</em> gene at positions 513 A to C or T or 516 C to T, and 14 (14.3%) had the wild-type sequence. None of the 69 SM-susceptible isolates examined had alterations in <em>rpsL</em> or <em>rrs</em>. The results of the SSCP, RFLP, and RDBH analyses for these mutations and wild-type sequences were completely consistent with DNA sequencing data. Five distinct single-nucleotide substitutions in codon 43 or 88 of <em>rpsL</em> gene or in position 513 or 516 of <em>rrs</em> gene were correctly identified in 84 of 98 (85.7%) phenotypically SM-resistant isolates by RDBH assay. Molecular analyses of the <em>rpsL</em> and <em>rrs</em> genes are useful for rapid prediction of SM resistance in most clinical strains of <em>M. tuberculosis.</em> Reverse dot-blot hybridization assay is a rapid, simple, and reliable method for the detection of drug resistance.</p></div>\",\"PeriodicalId\":100017,\"journal\":{\"name\":\"Acta Genetica Sinica\",\"volume\":\"33 7\",\"pages\":\"Pages 655-663\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S0379-4172(06)60096-6\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Genetica Sinica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0379417206600966\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Genetica Sinica","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0379417206600966","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Detection of Streptomycin Resistance in Mycobacterium tuberculosis Clinical Isolates Using Four Molecular Methods in China
To evaluate the relationship between mutations in rpsL or rrs genes and streptomycin (SM) resistance, we compared four molecular methods for their clinical value in the detection of SM resistance. Genotypic analysis of SM resistance in 167 M. tuberculosis clinical strains isolated from Chinese patients was performed by direct DNA sequencing, SSCP, RFLP, and reverse dot-blot hybridization (RDBH) assays. Of the 98 SM-resistant isolates, 78 (79.6%) had missense mutations in codon 43 or 88 of rpsL resulting in a Lys to Arg substitution, 6 (6.1%) had mutations of the rrs gene at positions 513 A to C or T or 516 C to T, and 14 (14.3%) had the wild-type sequence. None of the 69 SM-susceptible isolates examined had alterations in rpsL or rrs. The results of the SSCP, RFLP, and RDBH analyses for these mutations and wild-type sequences were completely consistent with DNA sequencing data. Five distinct single-nucleotide substitutions in codon 43 or 88 of rpsL gene or in position 513 or 516 of rrs gene were correctly identified in 84 of 98 (85.7%) phenotypically SM-resistant isolates by RDBH assay. Molecular analyses of the rpsL and rrs genes are useful for rapid prediction of SM resistance in most clinical strains of M. tuberculosis. Reverse dot-blot hybridization assay is a rapid, simple, and reliable method for the detection of drug resistance.