Hipolito M Custodio, Karin Broberg, Maria Wennberg, Jan-Håkan Jansson, Bengt Vessby, Göran Hallmans, Birgitta Stegmayr, Staffan Skerfving
{"title":"谷胱甘肽相关基因的多态性影响甲基汞潴留。","authors":"Hipolito M Custodio, Karin Broberg, Maria Wennberg, Jan-Håkan Jansson, Bengt Vessby, Göran Hallmans, Birgitta Stegmayr, Staffan Skerfving","doi":"10.1080/00039890409603438","DOIUrl":null,"url":null,"abstract":"<p><p>Methylmercury is eliminated from the human body as glutathione (GSH) conjugates. GSH production is mediated by glutamyl-cysteine ligase (GCL) and conjugation by glutathione S-transferases (GST). In this study, the authors tested whether polymorphisms in GCL and GST genes modify methylmercury retention. Erythrocyte mercury concentration (EryHg), plasma polyunsaturated fatty acids (PPUFA), and genotype for GCLC, GCLM, GSTA1, GSTM1, GSTP1, and GSTT1 were determined in 365 individuals. A general linear model was developed for analyzing whether genotype modified the regression of EryHg on PPUFA. The presence of one variant allele for either GCLC-129 or GSTP1-114 was associated with higher EryHg and steeper regression slope. No similar trends were shown for GCLM, GSTA1, GSTM1, or GSTT1. These findings indicate that GCLC polymorphisms that affect GSH production also affect methylmercury retention, and that GSTP1 may play a role in conjugating methylmercury with GSH.</p>","PeriodicalId":8155,"journal":{"name":"Archives of environmental health","volume":"59 11","pages":"588-95"},"PeriodicalIF":0.0000,"publicationDate":"2004-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/00039890409603438","citationCount":"90","resultStr":"{\"title\":\"Polymorphisms in glutathione-related genes affect methylmercury retention.\",\"authors\":\"Hipolito M Custodio, Karin Broberg, Maria Wennberg, Jan-Håkan Jansson, Bengt Vessby, Göran Hallmans, Birgitta Stegmayr, Staffan Skerfving\",\"doi\":\"10.1080/00039890409603438\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Methylmercury is eliminated from the human body as glutathione (GSH) conjugates. GSH production is mediated by glutamyl-cysteine ligase (GCL) and conjugation by glutathione S-transferases (GST). In this study, the authors tested whether polymorphisms in GCL and GST genes modify methylmercury retention. Erythrocyte mercury concentration (EryHg), plasma polyunsaturated fatty acids (PPUFA), and genotype for GCLC, GCLM, GSTA1, GSTM1, GSTP1, and GSTT1 were determined in 365 individuals. A general linear model was developed for analyzing whether genotype modified the regression of EryHg on PPUFA. The presence of one variant allele for either GCLC-129 or GSTP1-114 was associated with higher EryHg and steeper regression slope. No similar trends were shown for GCLM, GSTA1, GSTM1, or GSTT1. These findings indicate that GCLC polymorphisms that affect GSH production also affect methylmercury retention, and that GSTP1 may play a role in conjugating methylmercury with GSH.</p>\",\"PeriodicalId\":8155,\"journal\":{\"name\":\"Archives of environmental health\",\"volume\":\"59 11\",\"pages\":\"588-95\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/00039890409603438\",\"citationCount\":\"90\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archives of environmental health\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/00039890409603438\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of environmental health","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/00039890409603438","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Polymorphisms in glutathione-related genes affect methylmercury retention.
Methylmercury is eliminated from the human body as glutathione (GSH) conjugates. GSH production is mediated by glutamyl-cysteine ligase (GCL) and conjugation by glutathione S-transferases (GST). In this study, the authors tested whether polymorphisms in GCL and GST genes modify methylmercury retention. Erythrocyte mercury concentration (EryHg), plasma polyunsaturated fatty acids (PPUFA), and genotype for GCLC, GCLM, GSTA1, GSTM1, GSTP1, and GSTT1 were determined in 365 individuals. A general linear model was developed for analyzing whether genotype modified the regression of EryHg on PPUFA. The presence of one variant allele for either GCLC-129 or GSTP1-114 was associated with higher EryHg and steeper regression slope. No similar trends were shown for GCLM, GSTA1, GSTM1, or GSTT1. These findings indicate that GCLC polymorphisms that affect GSH production also affect methylmercury retention, and that GSTP1 may play a role in conjugating methylmercury with GSH.