自适应集成传感器处理补偿漂移和不确定性:随机“神经”方法。

T B Tang, H Chen, A F Murray
{"title":"自适应集成传感器处理补偿漂移和不确定性:随机“神经”方法。","authors":"T B Tang,&nbsp;H Chen,&nbsp;A F Murray","doi":"10.1049/ip-nbt:20040213","DOIUrl":null,"url":null,"abstract":"<p><p>An adaptive stochastic classifier based on a simple, novel neural architecture--the Continuous Restricted Boltzmann Machine (CRBM) is demonstrated. Together with sensors and signal conditioning circuits, the classifier is capable of measuring and classifying (with high accuracy) the H+ ion concentration, in the presence of both random noise and sensor drift. Training on-line, the stochastic classifier is able to overcome significant drift of real incomplete sensor data dynamically. As analogue hardware, this signal-level sensor fusion scheme is therefore suitable for real-time analysis in a miniaturised multisensor microsystem such as a Lab-in-a-Pill (LIAP).</p>","PeriodicalId":87402,"journal":{"name":"IEE proceedings. Nanobiotechnology","volume":"151 1","pages":"28-34"},"PeriodicalIF":0.0000,"publicationDate":"2004-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1049/ip-nbt:20040213","citationCount":"14","resultStr":"{\"title\":\"Adaptive, integrated sensor processing to compensate for drift and uncertainty: a stochastic 'neural' approach.\",\"authors\":\"T B Tang,&nbsp;H Chen,&nbsp;A F Murray\",\"doi\":\"10.1049/ip-nbt:20040213\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>An adaptive stochastic classifier based on a simple, novel neural architecture--the Continuous Restricted Boltzmann Machine (CRBM) is demonstrated. Together with sensors and signal conditioning circuits, the classifier is capable of measuring and classifying (with high accuracy) the H+ ion concentration, in the presence of both random noise and sensor drift. Training on-line, the stochastic classifier is able to overcome significant drift of real incomplete sensor data dynamically. As analogue hardware, this signal-level sensor fusion scheme is therefore suitable for real-time analysis in a miniaturised multisensor microsystem such as a Lab-in-a-Pill (LIAP).</p>\",\"PeriodicalId\":87402,\"journal\":{\"name\":\"IEE proceedings. Nanobiotechnology\",\"volume\":\"151 1\",\"pages\":\"28-34\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1049/ip-nbt:20040213\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEE proceedings. Nanobiotechnology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1049/ip-nbt:20040213\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEE proceedings. Nanobiotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1049/ip-nbt:20040213","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

提出了一种基于简单新颖神经结构的自适应随机分类器——连续受限玻尔兹曼机(CRBM)。与传感器和信号调理电路一起,该分类器能够在随机噪声和传感器漂移存在的情况下测量和分类(高精度)H+离子浓度。通过在线训练,随机分类器能够动态克服真实不完全传感器数据的显著漂移。作为模拟硬件,这种信号级传感器融合方案因此适用于小型化多传感器微系统(如Lab-in-a-Pill (LIAP))中的实时分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adaptive, integrated sensor processing to compensate for drift and uncertainty: a stochastic 'neural' approach.

An adaptive stochastic classifier based on a simple, novel neural architecture--the Continuous Restricted Boltzmann Machine (CRBM) is demonstrated. Together with sensors and signal conditioning circuits, the classifier is capable of measuring and classifying (with high accuracy) the H+ ion concentration, in the presence of both random noise and sensor drift. Training on-line, the stochastic classifier is able to overcome significant drift of real incomplete sensor data dynamically. As analogue hardware, this signal-level sensor fusion scheme is therefore suitable for real-time analysis in a miniaturised multisensor microsystem such as a Lab-in-a-Pill (LIAP).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信