细胞纳米生物技术小型化低温保存的跨学科方法的第一步。

H Zimmermann, A D Katsen, F R Ihmig, C H P Durst, S G Shirley, G R Fuhr
{"title":"细胞纳米生物技术小型化低温保存的跨学科方法的第一步。","authors":"H Zimmermann,&nbsp;A D Katsen,&nbsp;F R Ihmig,&nbsp;C H P Durst,&nbsp;S G Shirley,&nbsp;G R Fuhr","doi":"10.1049/ip-nbt:20040908","DOIUrl":null,"url":null,"abstract":"<p><p>The only widely used and accepted method for long-term cell preservation is storage below -130 degrees C. The biosciences will make increasing use of preservation and place new demands on it. Currently, cells are frozen in volumes greater than 1 ml but the new cell and implantation therapies (particularly those using stem cells) will require accurately defined freezing and storage conditions for each single cell. Broadly-based, routine freezing of biological samples allows the advantage of retrospective analysis and the possibility of saving genetic rights. For such applications, one billion is a modest estimation for the number of samples. Current cryotechniques cannot handle so many samples in an efficient and economic way, and the need for new cryotechnology is evident. The interdisciplinary approach presented here should lead to a new sample storage and operating strategy that fulfils the needs mentioned above. Fundamental principles of this new kind of smart sample storage are: (i) miniaturisation; (ii) modularisation; (iii) informationsample integration, i.e. freezing memory chips with samples; and (iv) physical and logical access to samples and information without thawing the samples. In contrast to current sample systems, the prototyped family of intelligent cryosubstrates allows the recovery of single wells (parts) of the substrate without thawing the rest of the sample. The development of intelligent cryosubstrates is linked to developments in high throughput freezing, high packing density storage and minimisation of cytotoxic protective agents.</p>","PeriodicalId":87402,"journal":{"name":"IEE proceedings. Nanobiotechnology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2004-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1049/ip-nbt:20040908","citationCount":"20","resultStr":"{\"title\":\"First steps of an interdisciplinary approach towards miniaturised cryopreservation for cellular nanobiotechnology.\",\"authors\":\"H Zimmermann,&nbsp;A D Katsen,&nbsp;F R Ihmig,&nbsp;C H P Durst,&nbsp;S G Shirley,&nbsp;G R Fuhr\",\"doi\":\"10.1049/ip-nbt:20040908\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The only widely used and accepted method for long-term cell preservation is storage below -130 degrees C. The biosciences will make increasing use of preservation and place new demands on it. Currently, cells are frozen in volumes greater than 1 ml but the new cell and implantation therapies (particularly those using stem cells) will require accurately defined freezing and storage conditions for each single cell. Broadly-based, routine freezing of biological samples allows the advantage of retrospective analysis and the possibility of saving genetic rights. For such applications, one billion is a modest estimation for the number of samples. Current cryotechniques cannot handle so many samples in an efficient and economic way, and the need for new cryotechnology is evident. The interdisciplinary approach presented here should lead to a new sample storage and operating strategy that fulfils the needs mentioned above. Fundamental principles of this new kind of smart sample storage are: (i) miniaturisation; (ii) modularisation; (iii) informationsample integration, i.e. freezing memory chips with samples; and (iv) physical and logical access to samples and information without thawing the samples. In contrast to current sample systems, the prototyped family of intelligent cryosubstrates allows the recovery of single wells (parts) of the substrate without thawing the rest of the sample. The development of intelligent cryosubstrates is linked to developments in high throughput freezing, high packing density storage and minimisation of cytotoxic protective agents.</p>\",\"PeriodicalId\":87402,\"journal\":{\"name\":\"IEE proceedings. Nanobiotechnology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1049/ip-nbt:20040908\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEE proceedings. Nanobiotechnology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1049/ip-nbt:20040908\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEE proceedings. Nanobiotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1049/ip-nbt:20040908","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

摘要

长期保存细胞的唯一被广泛使用和接受的方法是保存在零下130摄氏度以下。生物科学将越来越多地使用保存并对其提出新的要求。目前,细胞的冷冻体积大于1ml,但新的细胞和植入疗法(特别是那些使用干细胞的疗法)将需要精确定义每个单个细胞的冷冻和储存条件。对生物样本进行广泛的常规冷冻,可以进行回顾性分析,并有可能挽救遗传权利。对于这样的应用,10亿是对样本数量的适度估计。目前的冷冻技术无法以高效和经济的方式处理如此多的样品,因此对新的冷冻技术的需求是显而易见的。这里提出的跨学科方法应该导致一个新的样本存储和操作策略,满足上述需求。这种新型智能样品存储的基本原则是:(1)小型化;(2)模块化;(iii)信息样本整合,即用样本冻结存储芯片;(iv)在不解冻样品的情况下对样品和信息进行物理和逻辑访问。与目前的样品系统相比,智能低温底物的原型家族允许回收底物的单孔(部分),而不解冻其余样品。智能低温底物的发展与高通量冷冻,高包装密度储存和细胞毒性保护剂最小化的发展有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
First steps of an interdisciplinary approach towards miniaturised cryopreservation for cellular nanobiotechnology.

The only widely used and accepted method for long-term cell preservation is storage below -130 degrees C. The biosciences will make increasing use of preservation and place new demands on it. Currently, cells are frozen in volumes greater than 1 ml but the new cell and implantation therapies (particularly those using stem cells) will require accurately defined freezing and storage conditions for each single cell. Broadly-based, routine freezing of biological samples allows the advantage of retrospective analysis and the possibility of saving genetic rights. For such applications, one billion is a modest estimation for the number of samples. Current cryotechniques cannot handle so many samples in an efficient and economic way, and the need for new cryotechnology is evident. The interdisciplinary approach presented here should lead to a new sample storage and operating strategy that fulfils the needs mentioned above. Fundamental principles of this new kind of smart sample storage are: (i) miniaturisation; (ii) modularisation; (iii) informationsample integration, i.e. freezing memory chips with samples; and (iv) physical and logical access to samples and information without thawing the samples. In contrast to current sample systems, the prototyped family of intelligent cryosubstrates allows the recovery of single wells (parts) of the substrate without thawing the rest of the sample. The development of intelligent cryosubstrates is linked to developments in high throughput freezing, high packing density storage and minimisation of cytotoxic protective agents.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信