金属离子与癌变。

EXS Pub Date : 2006-01-01 DOI:10.1007/3-7643-7378-4_5
Troy R Durham, Elizabeth T Snow
{"title":"金属离子与癌变。","authors":"Troy R Durham,&nbsp;Elizabeth T Snow","doi":"10.1007/3-7643-7378-4_5","DOIUrl":null,"url":null,"abstract":"<p><p>Metals are essential for the normal functioning of living organisms. Their uses in biological systems are varied, but are frequently associated with sites of critical protein function, such as zinc finger motifs and electron or oxygen carriers. These functions only require essential metals in minute amounts, hence they are termed trace metals. Other metals are, however, less beneficial, owing to their ability to promote a wide variety of deleterious health effects, including cancer. Metals such as arsenic, for example, can produce a variety of diseases ranging from keratosis of the palms and feet to cancers in multiple target organs. The nature and type of metal-induced pathologies appear to be dependent on the concentration, speciation, and length of exposure. Unfortunately, human contact with metals is an inescapable consequence of human life, with exposures occurring from both occupational and environmental sources. A uniform mechanism of action for all harmful metals is unlikely, if not implausible, given the diverse chemical properties of each metal. In this chapter we will review the mechanisms of carcinogenesis of arsenic, cadmium, chromium, and nickel, the four known carcinogenic metals that are best understood. The key areas of speciation, bioavailability, and mechanisms of action are discussed with particular reference to the role of metals in alteration of gene expression and maintenance of genomic integrity.</p>","PeriodicalId":77125,"journal":{"name":"EXS","volume":" 96","pages":"97-130"},"PeriodicalIF":0.0000,"publicationDate":"2006-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/3-7643-7378-4_5","citationCount":"46","resultStr":"{\"title\":\"Metal ions and carcinogenesis.\",\"authors\":\"Troy R Durham,&nbsp;Elizabeth T Snow\",\"doi\":\"10.1007/3-7643-7378-4_5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Metals are essential for the normal functioning of living organisms. Their uses in biological systems are varied, but are frequently associated with sites of critical protein function, such as zinc finger motifs and electron or oxygen carriers. These functions only require essential metals in minute amounts, hence they are termed trace metals. Other metals are, however, less beneficial, owing to their ability to promote a wide variety of deleterious health effects, including cancer. Metals such as arsenic, for example, can produce a variety of diseases ranging from keratosis of the palms and feet to cancers in multiple target organs. The nature and type of metal-induced pathologies appear to be dependent on the concentration, speciation, and length of exposure. Unfortunately, human contact with metals is an inescapable consequence of human life, with exposures occurring from both occupational and environmental sources. A uniform mechanism of action for all harmful metals is unlikely, if not implausible, given the diverse chemical properties of each metal. In this chapter we will review the mechanisms of carcinogenesis of arsenic, cadmium, chromium, and nickel, the four known carcinogenic metals that are best understood. The key areas of speciation, bioavailability, and mechanisms of action are discussed with particular reference to the role of metals in alteration of gene expression and maintenance of genomic integrity.</p>\",\"PeriodicalId\":77125,\"journal\":{\"name\":\"EXS\",\"volume\":\" 96\",\"pages\":\"97-130\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/3-7643-7378-4_5\",\"citationCount\":\"46\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EXS\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/3-7643-7378-4_5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EXS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/3-7643-7378-4_5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 46

摘要

金属对生物体的正常运作是必不可少的。它们在生物系统中的用途多种多样,但通常与关键蛋白质功能位点有关,如锌指基序和电子或氧载体。这些功能只需要微量的必需金属,因此它们被称为微量金属。然而,其他金属则不那么有益,因为它们能够促进各种有害的健康影响,包括癌症。例如,砷等金属可以产生各种疾病,从手掌和脚的角化病到多个目标器官的癌症。金属诱发病变的性质和类型似乎取决于暴露的浓度、种类和长度。不幸的是,人类与金属的接触是人类生活中不可避免的后果,其暴露来自职业和环境来源。鉴于每种金属的化学性质各不相同,对所有有害金属采取统一的作用机制即使不是不可能的,也是不可能的。在本章中,我们将回顾砷、镉、铬和镍的致癌机制,这四种已知的致癌金属是最了解的。讨论了物种形成、生物利用度和作用机制等关键领域,特别提到了金属在基因表达改变和基因组完整性维持中的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Metal ions and carcinogenesis.

Metals are essential for the normal functioning of living organisms. Their uses in biological systems are varied, but are frequently associated with sites of critical protein function, such as zinc finger motifs and electron or oxygen carriers. These functions only require essential metals in minute amounts, hence they are termed trace metals. Other metals are, however, less beneficial, owing to their ability to promote a wide variety of deleterious health effects, including cancer. Metals such as arsenic, for example, can produce a variety of diseases ranging from keratosis of the palms and feet to cancers in multiple target organs. The nature and type of metal-induced pathologies appear to be dependent on the concentration, speciation, and length of exposure. Unfortunately, human contact with metals is an inescapable consequence of human life, with exposures occurring from both occupational and environmental sources. A uniform mechanism of action for all harmful metals is unlikely, if not implausible, given the diverse chemical properties of each metal. In this chapter we will review the mechanisms of carcinogenesis of arsenic, cadmium, chromium, and nickel, the four known carcinogenic metals that are best understood. The key areas of speciation, bioavailability, and mechanisms of action are discussed with particular reference to the role of metals in alteration of gene expression and maintenance of genomic integrity.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
EXS
EXS
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信