Peter Alexander , Aiden Berri , Dominic Moran , David Reay , Mark D.A. Rounsevell
{"title":"宠物食品的全球环境足迹","authors":"Peter Alexander , Aiden Berri , Dominic Moran , David Reay , Mark D.A. Rounsevell","doi":"10.1016/j.gloenvcha.2020.102153","DOIUrl":null,"url":null,"abstract":"<div><p>Global pet ownership, especially of cats and dogs, is rising with income growth, and so too are the environmental impacts associated with their food. The global extent of these impacts has not been quantified, and existing national assessments are potentially biased due to the way in which they account for the relative impacts of constituent animal by-products (ABPs). ABPs typically have lower value than other animal products (i.e. meat, milk and eggs), but are nevertheless associated with non-negligible environmental impacts. Here we present the first global environmental impact assessment of pet food. The approach is novel in applying an economic value allocation approach to the impact of ABPs and other animal products to represent better the environmental burden. We find annual global dry pet food production is associated with 56–151 Mt CO<sub>2</sub> equivalent emissions (1.1%−2.9% of global agricultural emissions), 41–58 Mha agricultural land-use (0.8–1.2% of global agricultural land use) and 5–11 km<sup>3</sup> freshwater use (0.2–0.4% of water extraction of agriculture). These impacts are equivalent to an environmental footprint of around twicethe UK land area, and would make greenhouse gas emission from pet food around the 60th highest emitting country, or equivalent to total emissions from countries such as Mozambique or the Philippines. These results indicate that rising pet food demand should be included in the broader global debate about food system sustainability.</p></div>","PeriodicalId":328,"journal":{"name":"Global Environmental Change","volume":"65 ","pages":"Article 102153"},"PeriodicalIF":8.6000,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.gloenvcha.2020.102153","citationCount":"29","resultStr":"{\"title\":\"The global environmental paw print of pet food\",\"authors\":\"Peter Alexander , Aiden Berri , Dominic Moran , David Reay , Mark D.A. Rounsevell\",\"doi\":\"10.1016/j.gloenvcha.2020.102153\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Global pet ownership, especially of cats and dogs, is rising with income growth, and so too are the environmental impacts associated with their food. The global extent of these impacts has not been quantified, and existing national assessments are potentially biased due to the way in which they account for the relative impacts of constituent animal by-products (ABPs). ABPs typically have lower value than other animal products (i.e. meat, milk and eggs), but are nevertheless associated with non-negligible environmental impacts. Here we present the first global environmental impact assessment of pet food. The approach is novel in applying an economic value allocation approach to the impact of ABPs and other animal products to represent better the environmental burden. We find annual global dry pet food production is associated with 56–151 Mt CO<sub>2</sub> equivalent emissions (1.1%−2.9% of global agricultural emissions), 41–58 Mha agricultural land-use (0.8–1.2% of global agricultural land use) and 5–11 km<sup>3</sup> freshwater use (0.2–0.4% of water extraction of agriculture). These impacts are equivalent to an environmental footprint of around twicethe UK land area, and would make greenhouse gas emission from pet food around the 60th highest emitting country, or equivalent to total emissions from countries such as Mozambique or the Philippines. These results indicate that rising pet food demand should be included in the broader global debate about food system sustainability.</p></div>\",\"PeriodicalId\":328,\"journal\":{\"name\":\"Global Environmental Change\",\"volume\":\"65 \",\"pages\":\"Article 102153\"},\"PeriodicalIF\":8.6000,\"publicationDate\":\"2020-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.gloenvcha.2020.102153\",\"citationCount\":\"29\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Global Environmental Change\",\"FirstCategoryId\":\"6\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0959378020307366\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Environmental Change","FirstCategoryId":"6","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0959378020307366","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Global pet ownership, especially of cats and dogs, is rising with income growth, and so too are the environmental impacts associated with their food. The global extent of these impacts has not been quantified, and existing national assessments are potentially biased due to the way in which they account for the relative impacts of constituent animal by-products (ABPs). ABPs typically have lower value than other animal products (i.e. meat, milk and eggs), but are nevertheless associated with non-negligible environmental impacts. Here we present the first global environmental impact assessment of pet food. The approach is novel in applying an economic value allocation approach to the impact of ABPs and other animal products to represent better the environmental burden. We find annual global dry pet food production is associated with 56–151 Mt CO2 equivalent emissions (1.1%−2.9% of global agricultural emissions), 41–58 Mha agricultural land-use (0.8–1.2% of global agricultural land use) and 5–11 km3 freshwater use (0.2–0.4% of water extraction of agriculture). These impacts are equivalent to an environmental footprint of around twicethe UK land area, and would make greenhouse gas emission from pet food around the 60th highest emitting country, or equivalent to total emissions from countries such as Mozambique or the Philippines. These results indicate that rising pet food demand should be included in the broader global debate about food system sustainability.
期刊介绍:
Global Environmental Change is a prestigious international journal that publishes articles of high quality, both theoretically and empirically rigorous. The journal aims to contribute to the understanding of global environmental change from the perspectives of human and policy dimensions. Specifically, it considers global environmental change as the result of processes occurring at the local level, but with wide-ranging impacts on various spatial, temporal, and socio-political scales.
In terms of content, the journal seeks articles with a strong social science component. This includes research that examines the societal drivers and consequences of environmental change, as well as social and policy processes that aim to address these challenges. While the journal covers a broad range of topics, including biodiversity and ecosystem services, climate, coasts, food systems, land use and land cover, oceans, urban areas, and water resources, it also welcomes contributions that investigate the drivers, consequences, and management of other areas affected by environmental change.
Overall, Global Environmental Change encourages research that deepens our understanding of the complex interactions between human activities and the environment, with the goal of informing policy and decision-making.