{"title":"[脂质体介导的人CD40基因转染与人脐静脉内皮细胞ECV-304]。","authors":"Wei-rong Wang, Rong Lin, Yu-cong Yang, Wei-jie Gan, Jun-tian Liu, She-min Lü","doi":"","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>To construct an eukaryotic expression vector containing human CD40 gene for its efficient, continuous and stable expression in human umbilical vein endothelial ECV-304 cells.</p><p><strong>Methods: </strong>The recombinant plasmid pUCD40 was digested with endonucleases to obtain human CD40 gene fragment, which was cloned into pCDNA3.1 vector to construct recombinant eukaryotic expression vector pCDNA3.1(+)/CD40. The recombinant vector was identified by enzyme digestion before introduced into ECV-304 cells via liposome, with the positive cell clones selected with G418. The stable transfection and expression of CD40 in ECV-304 cells were identified by reverse transcription (RT)-PCR, Western blotting and flow cytometry, respectively.</p><p><strong>Results: </strong>Enzyme digestion analysis showed that target gene had been cloned into the recombinant vector. The transfected ECV-304 cells successfully expressed human CD40 as determined by RT-PCR and Western-blotting, and 95% of the cells were CD40-positive as shown by flow cytometry.</p><p><strong>Conclusion: </strong>The recombinant eukaryotic expression vector pCDNA3.1(+)/CD40 has been successfully constructed, which is capable of stable transfection and expression of CD40 in ECV-304 cells to facilitate further investigation of the roles of CD40 molecule in antiatherosclerotic drug development.</p>","PeriodicalId":11097,"journal":{"name":"Di 1 jun yi da xue xue bao = Academic journal of the first medical college of PLA","volume":"25 12","pages":"1474-7"},"PeriodicalIF":0.0000,"publicationDate":"2005-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"[Liposome-mediated human CD40 gene transfection and human umbilical vein endothelial ECV-304 cells].\",\"authors\":\"Wei-rong Wang, Rong Lin, Yu-cong Yang, Wei-jie Gan, Jun-tian Liu, She-min Lü\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective: </strong>To construct an eukaryotic expression vector containing human CD40 gene for its efficient, continuous and stable expression in human umbilical vein endothelial ECV-304 cells.</p><p><strong>Methods: </strong>The recombinant plasmid pUCD40 was digested with endonucleases to obtain human CD40 gene fragment, which was cloned into pCDNA3.1 vector to construct recombinant eukaryotic expression vector pCDNA3.1(+)/CD40. The recombinant vector was identified by enzyme digestion before introduced into ECV-304 cells via liposome, with the positive cell clones selected with G418. The stable transfection and expression of CD40 in ECV-304 cells were identified by reverse transcription (RT)-PCR, Western blotting and flow cytometry, respectively.</p><p><strong>Results: </strong>Enzyme digestion analysis showed that target gene had been cloned into the recombinant vector. The transfected ECV-304 cells successfully expressed human CD40 as determined by RT-PCR and Western-blotting, and 95% of the cells were CD40-positive as shown by flow cytometry.</p><p><strong>Conclusion: </strong>The recombinant eukaryotic expression vector pCDNA3.1(+)/CD40 has been successfully constructed, which is capable of stable transfection and expression of CD40 in ECV-304 cells to facilitate further investigation of the roles of CD40 molecule in antiatherosclerotic drug development.</p>\",\"PeriodicalId\":11097,\"journal\":{\"name\":\"Di 1 jun yi da xue xue bao = Academic journal of the first medical college of PLA\",\"volume\":\"25 12\",\"pages\":\"1474-7\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Di 1 jun yi da xue xue bao = Academic journal of the first medical college of PLA\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Di 1 jun yi da xue xue bao = Academic journal of the first medical college of PLA","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
[Liposome-mediated human CD40 gene transfection and human umbilical vein endothelial ECV-304 cells].
Objective: To construct an eukaryotic expression vector containing human CD40 gene for its efficient, continuous and stable expression in human umbilical vein endothelial ECV-304 cells.
Methods: The recombinant plasmid pUCD40 was digested with endonucleases to obtain human CD40 gene fragment, which was cloned into pCDNA3.1 vector to construct recombinant eukaryotic expression vector pCDNA3.1(+)/CD40. The recombinant vector was identified by enzyme digestion before introduced into ECV-304 cells via liposome, with the positive cell clones selected with G418. The stable transfection and expression of CD40 in ECV-304 cells were identified by reverse transcription (RT)-PCR, Western blotting and flow cytometry, respectively.
Results: Enzyme digestion analysis showed that target gene had been cloned into the recombinant vector. The transfected ECV-304 cells successfully expressed human CD40 as determined by RT-PCR and Western-blotting, and 95% of the cells were CD40-positive as shown by flow cytometry.
Conclusion: The recombinant eukaryotic expression vector pCDNA3.1(+)/CD40 has been successfully constructed, which is capable of stable transfection and expression of CD40 in ECV-304 cells to facilitate further investigation of the roles of CD40 molecule in antiatherosclerotic drug development.