先进的多孔有机聚合物膜:设计、制造和节能应用

IF 22.2 Q1 CHEMISTRY, MULTIDISCIPLINARY
Yanpei Song, Changjia Zhu, Shengqian Ma
{"title":"先进的多孔有机聚合物膜:设计、制造和节能应用","authors":"Yanpei Song,&nbsp;Changjia Zhu,&nbsp;Shengqian Ma","doi":"10.1016/j.enchem.2022.100079","DOIUrl":null,"url":null,"abstract":"<div><p>Membrane separation technology is of great research interest in industry owing to its unparalleled merits such as high selectivity with unsuppressed permeability, reduced carbon footprint, small capital investment, and low energy consumption in comparison to traditional separation techniques. In the last few decades, polyamide membranes dominate the membrane industry until the porous organic polymers (POPs) get a ticket into the area of membrane separation. POPs bearing rich pore architectures and feasible functionalization are ready for fabricating novel membranes for rapid and precise molecular sieving. Here, a background overview of separation technology is provided, followed by a brief introduction of various POP-based membranes and the fabrication approaches of these membranes. Then, recent advancements of POP-bases membranes in energy-saving applications including gas separation and liquid separation are highlighted together with discussions about membrane design and generation involved. Finally, a concise conclusion with our perspective and challenges remaining for the future development of POP-based membranes are outlined.</p></div>","PeriodicalId":307,"journal":{"name":"EnergyChem","volume":"4 4","pages":"Article 100079"},"PeriodicalIF":22.2000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Advanced porous organic polymer membranes: Design, fabrication, and energy-saving applications\",\"authors\":\"Yanpei Song,&nbsp;Changjia Zhu,&nbsp;Shengqian Ma\",\"doi\":\"10.1016/j.enchem.2022.100079\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Membrane separation technology is of great research interest in industry owing to its unparalleled merits such as high selectivity with unsuppressed permeability, reduced carbon footprint, small capital investment, and low energy consumption in comparison to traditional separation techniques. In the last few decades, polyamide membranes dominate the membrane industry until the porous organic polymers (POPs) get a ticket into the area of membrane separation. POPs bearing rich pore architectures and feasible functionalization are ready for fabricating novel membranes for rapid and precise molecular sieving. Here, a background overview of separation technology is provided, followed by a brief introduction of various POP-based membranes and the fabrication approaches of these membranes. Then, recent advancements of POP-bases membranes in energy-saving applications including gas separation and liquid separation are highlighted together with discussions about membrane design and generation involved. Finally, a concise conclusion with our perspective and challenges remaining for the future development of POP-based membranes are outlined.</p></div>\",\"PeriodicalId\":307,\"journal\":{\"name\":\"EnergyChem\",\"volume\":\"4 4\",\"pages\":\"Article 100079\"},\"PeriodicalIF\":22.2000,\"publicationDate\":\"2022-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EnergyChem\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2589778022000112\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EnergyChem","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589778022000112","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 12

摘要

膜分离技术与传统分离技术相比,具有选择性高、渗透性不受抑制、碳足迹少、投资少、能耗低等优点,受到工业领域的广泛关注。在过去的几十年里,聚酰胺膜一直主导着膜工业,直到多孔有机聚合物(pop)进入膜分离领域。具有丰富的孔结构和可行的功能化的持久性有机污染物已经准备好制造用于快速和精确分子筛选的新型膜。本文对分离技术的背景进行了概述,然后简要介绍了各种基于pop的膜和这些膜的制备方法。然后,重点介绍了pop基膜在气体分离和液体分离等节能应用方面的最新进展,并对膜的设计和生产进行了讨论。最后,简要总结了我们对pop基膜未来发展的展望和面临的挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Advanced porous organic polymer membranes: Design, fabrication, and energy-saving applications

Membrane separation technology is of great research interest in industry owing to its unparalleled merits such as high selectivity with unsuppressed permeability, reduced carbon footprint, small capital investment, and low energy consumption in comparison to traditional separation techniques. In the last few decades, polyamide membranes dominate the membrane industry until the porous organic polymers (POPs) get a ticket into the area of membrane separation. POPs bearing rich pore architectures and feasible functionalization are ready for fabricating novel membranes for rapid and precise molecular sieving. Here, a background overview of separation technology is provided, followed by a brief introduction of various POP-based membranes and the fabrication approaches of these membranes. Then, recent advancements of POP-bases membranes in energy-saving applications including gas separation and liquid separation are highlighted together with discussions about membrane design and generation involved. Finally, a concise conclusion with our perspective and challenges remaining for the future development of POP-based membranes are outlined.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
EnergyChem
EnergyChem Multiple-
CiteScore
40.80
自引率
2.80%
发文量
23
审稿时长
40 days
期刊介绍: EnergyChem, a reputable journal, focuses on publishing high-quality research and review articles within the realm of chemistry, chemical engineering, and materials science with a specific emphasis on energy applications. The priority areas covered by the journal include:Solar energy,Energy harvesting devices,Fuel cells,Hydrogen energy,Bioenergy and biofuels,Batteries,Supercapacitors,Electrocatalysis and photocatalysis,Energy storage and energy conversion,Carbon capture and storage
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信