Mukesh Sharma, V Narendra Kumar, Subodh K Katiyar, Richa Sharma, Bhanu P Shukla, Babu Sengupta
{"title":"空气微粒污染对居住在印度坎普尔三个地区的受试者呼吸健康的影响。","authors":"Mukesh Sharma, V Narendra Kumar, Subodh K Katiyar, Richa Sharma, Bhanu P Shukla, Babu Sengupta","doi":"10.3200/AEOH.59.7.348-358","DOIUrl":null,"url":null,"abstract":"<p><p>In this study, the authors assessed the relationship between daily changes in respiratory health and particulate levels with diameters of (a) less than 10 microm (PM10) and (b) less than 2.5 microm (PM2.5) in Kanpur, India. The subjects (N = 91) were recruited from 3 areas in Kanpur: (1) Indian Institute of Technology (Kanpur), which was a relatively clean area; (b) Vikas Nagar, a typical commercial area; and (c) finally, the residential area of Juhilal Colony. All subjects resided near to air quality monitoring sites. Air quality and peak expiratory flow rate samplings were conducted for 39 d. Once during the sampling period, lung-function tests (i.e., forced expiratory volume in 1 s, forced vital capacity) were performed on each subject. Subjects who resided at the clean site performed at predicted (i.e., acceptable) values more often than did subjects who lived at the remaining 2 sites. Subjects who lived at all 3 sites demonstrated a substantial average deficit in baseline forced vital capacity and forced expiratory volume in 1 s values. The authors used a statistical model to estimate that an increase of 100 microg/m3 of the pollutant PM10 could reduce the mean peak expiratory flow rate of an individual by approximately 3.2 l/min.</p>","PeriodicalId":8155,"journal":{"name":"Archives of environmental health","volume":"59 7","pages":"348-58"},"PeriodicalIF":0.0000,"publicationDate":"2004-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3200/AEOH.59.7.348-358","citationCount":"32","resultStr":"{\"title\":\"Effects of particulate air pollution on the respiratory health of subjects who live in three areas in Kanpur, India.\",\"authors\":\"Mukesh Sharma, V Narendra Kumar, Subodh K Katiyar, Richa Sharma, Bhanu P Shukla, Babu Sengupta\",\"doi\":\"10.3200/AEOH.59.7.348-358\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this study, the authors assessed the relationship between daily changes in respiratory health and particulate levels with diameters of (a) less than 10 microm (PM10) and (b) less than 2.5 microm (PM2.5) in Kanpur, India. The subjects (N = 91) were recruited from 3 areas in Kanpur: (1) Indian Institute of Technology (Kanpur), which was a relatively clean area; (b) Vikas Nagar, a typical commercial area; and (c) finally, the residential area of Juhilal Colony. All subjects resided near to air quality monitoring sites. Air quality and peak expiratory flow rate samplings were conducted for 39 d. Once during the sampling period, lung-function tests (i.e., forced expiratory volume in 1 s, forced vital capacity) were performed on each subject. Subjects who resided at the clean site performed at predicted (i.e., acceptable) values more often than did subjects who lived at the remaining 2 sites. Subjects who lived at all 3 sites demonstrated a substantial average deficit in baseline forced vital capacity and forced expiratory volume in 1 s values. The authors used a statistical model to estimate that an increase of 100 microg/m3 of the pollutant PM10 could reduce the mean peak expiratory flow rate of an individual by approximately 3.2 l/min.</p>\",\"PeriodicalId\":8155,\"journal\":{\"name\":\"Archives of environmental health\",\"volume\":\"59 7\",\"pages\":\"348-58\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.3200/AEOH.59.7.348-358\",\"citationCount\":\"32\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archives of environmental health\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3200/AEOH.59.7.348-358\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of environmental health","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3200/AEOH.59.7.348-358","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Effects of particulate air pollution on the respiratory health of subjects who live in three areas in Kanpur, India.
In this study, the authors assessed the relationship between daily changes in respiratory health and particulate levels with diameters of (a) less than 10 microm (PM10) and (b) less than 2.5 microm (PM2.5) in Kanpur, India. The subjects (N = 91) were recruited from 3 areas in Kanpur: (1) Indian Institute of Technology (Kanpur), which was a relatively clean area; (b) Vikas Nagar, a typical commercial area; and (c) finally, the residential area of Juhilal Colony. All subjects resided near to air quality monitoring sites. Air quality and peak expiratory flow rate samplings were conducted for 39 d. Once during the sampling period, lung-function tests (i.e., forced expiratory volume in 1 s, forced vital capacity) were performed on each subject. Subjects who resided at the clean site performed at predicted (i.e., acceptable) values more often than did subjects who lived at the remaining 2 sites. Subjects who lived at all 3 sites demonstrated a substantial average deficit in baseline forced vital capacity and forced expiratory volume in 1 s values. The authors used a statistical model to estimate that an increase of 100 microg/m3 of the pollutant PM10 could reduce the mean peak expiratory flow rate of an individual by approximately 3.2 l/min.