{"title":"对乙酰氨基酚降低成骨细胞中由PGE2和PGF2α刺激的骨保护素合成:抑制SAPK/JNK,但不抑制p38 MAPK或p44/p42 MAPK。","authors":"Woo Kim, Haruhiko Tokuda, Kumiko Tanabe, Shinobu Yamaguchi, Tomoyuki Hioki, Junko Tachi, Rie Matsushima-Nishiwaki, Osamu Kozawa, Hiroki Iida","doi":"10.2220/biomedres.42.77","DOIUrl":null,"url":null,"abstract":"<p><p>Acetaminophen is one of the most widely used analgesic and antipyretic medicines, whose long-period use has reportedly been associated with an increased risk of bone fracture. However, the mechanism underlying this undesired effect remains to be investigated. The homeostatic control of bone tissue depends on the interaction between osteoblasts and osteoclasts. Osteoprotegerin produced by osteoblasts is known to play an essential role in suppressing osteoclast induction. We have previously reported that prostaglandin (PG) E<sub>2</sub> and PGF<sub>2α</sub> induce osteoprotegerin synthesis through p38 mitogen-activated protein kinase (MAPK), p44/p42 MAPK and stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK) in osteoblast-like MC3T3-E1 cells. In the present study, we investigated the effects of acetaminophen on the osteoprotegerin synthesis induced by PGE<sub>2</sub> and PGF<sub>2α</sub> in MC3T3-E1 cells. Acetaminophen significantly suppressed the osteoprotegerin release stimulated by PGE<sub>2</sub> and PGF<sub>2α</sub>. The PGE<sub>2</sub>-induced expression of osteoprotegerin mRNA was also reduced by acetaminophen. Acetaminophen markedly downregulated the phosphorylation of SAPK/JNK stimulated by PGE<sub>2</sub> and PGF<sub>2α</sub>, but not those of p38 MAPK or p44/p42 MAPK. SP600125, an inhibitor of SAPK/JNK, suppressed the levels of PGE<sub>2</sub>- and PGF<sub>2α</sub>-upregulated osteoprotegerin mRNA expression. Taken together, these results strongly suggest that acetaminophen reduces the PGE<sub>2</sub>- and PGF<sub>2α</sub>-stimulated synthesis of osteoprotegerin in osteoblasts, and that the suppressive effect is exerted via attenuation of SAPK/JNK. These findings provide a molecular basis for the possible effect of acetaminophen on bone tissue metabolism.</p>","PeriodicalId":9138,"journal":{"name":"Biomedical Research-tokyo","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Acetaminophen reduces osteoprotegerin synthesis stimulated by PGE<sub>2</sub> and PGF<sub>2α</sub> in osteoblasts: attenuation of SAPK/JNK but not p38 MAPK or p44/p42 MAPK.\",\"authors\":\"Woo Kim, Haruhiko Tokuda, Kumiko Tanabe, Shinobu Yamaguchi, Tomoyuki Hioki, Junko Tachi, Rie Matsushima-Nishiwaki, Osamu Kozawa, Hiroki Iida\",\"doi\":\"10.2220/biomedres.42.77\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Acetaminophen is one of the most widely used analgesic and antipyretic medicines, whose long-period use has reportedly been associated with an increased risk of bone fracture. However, the mechanism underlying this undesired effect remains to be investigated. The homeostatic control of bone tissue depends on the interaction between osteoblasts and osteoclasts. Osteoprotegerin produced by osteoblasts is known to play an essential role in suppressing osteoclast induction. We have previously reported that prostaglandin (PG) E<sub>2</sub> and PGF<sub>2α</sub> induce osteoprotegerin synthesis through p38 mitogen-activated protein kinase (MAPK), p44/p42 MAPK and stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK) in osteoblast-like MC3T3-E1 cells. In the present study, we investigated the effects of acetaminophen on the osteoprotegerin synthesis induced by PGE<sub>2</sub> and PGF<sub>2α</sub> in MC3T3-E1 cells. Acetaminophen significantly suppressed the osteoprotegerin release stimulated by PGE<sub>2</sub> and PGF<sub>2α</sub>. The PGE<sub>2</sub>-induced expression of osteoprotegerin mRNA was also reduced by acetaminophen. Acetaminophen markedly downregulated the phosphorylation of SAPK/JNK stimulated by PGE<sub>2</sub> and PGF<sub>2α</sub>, but not those of p38 MAPK or p44/p42 MAPK. SP600125, an inhibitor of SAPK/JNK, suppressed the levels of PGE<sub>2</sub>- and PGF<sub>2α</sub>-upregulated osteoprotegerin mRNA expression. Taken together, these results strongly suggest that acetaminophen reduces the PGE<sub>2</sub>- and PGF<sub>2α</sub>-stimulated synthesis of osteoprotegerin in osteoblasts, and that the suppressive effect is exerted via attenuation of SAPK/JNK. These findings provide a molecular basis for the possible effect of acetaminophen on bone tissue metabolism.</p>\",\"PeriodicalId\":9138,\"journal\":{\"name\":\"Biomedical Research-tokyo\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedical Research-tokyo\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2220/biomedres.42.77\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Research-tokyo","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2220/biomedres.42.77","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
Acetaminophen reduces osteoprotegerin synthesis stimulated by PGE2 and PGF2α in osteoblasts: attenuation of SAPK/JNK but not p38 MAPK or p44/p42 MAPK.
Acetaminophen is one of the most widely used analgesic and antipyretic medicines, whose long-period use has reportedly been associated with an increased risk of bone fracture. However, the mechanism underlying this undesired effect remains to be investigated. The homeostatic control of bone tissue depends on the interaction between osteoblasts and osteoclasts. Osteoprotegerin produced by osteoblasts is known to play an essential role in suppressing osteoclast induction. We have previously reported that prostaglandin (PG) E2 and PGF2α induce osteoprotegerin synthesis through p38 mitogen-activated protein kinase (MAPK), p44/p42 MAPK and stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK) in osteoblast-like MC3T3-E1 cells. In the present study, we investigated the effects of acetaminophen on the osteoprotegerin synthesis induced by PGE2 and PGF2α in MC3T3-E1 cells. Acetaminophen significantly suppressed the osteoprotegerin release stimulated by PGE2 and PGF2α. The PGE2-induced expression of osteoprotegerin mRNA was also reduced by acetaminophen. Acetaminophen markedly downregulated the phosphorylation of SAPK/JNK stimulated by PGE2 and PGF2α, but not those of p38 MAPK or p44/p42 MAPK. SP600125, an inhibitor of SAPK/JNK, suppressed the levels of PGE2- and PGF2α-upregulated osteoprotegerin mRNA expression. Taken together, these results strongly suggest that acetaminophen reduces the PGE2- and PGF2α-stimulated synthesis of osteoprotegerin in osteoblasts, and that the suppressive effect is exerted via attenuation of SAPK/JNK. These findings provide a molecular basis for the possible effect of acetaminophen on bone tissue metabolism.
期刊介绍:
Biomedical Research is peer-reviewed International Research Journal . It was first launched in 1990 as a biannual English Journal and later became triannual. From 2008 it is published in Jan-Apr/ May-Aug/ Sep-Dec..