Manuela A A Ayee, Brendan C Bunker, Jordan L De Groot
{"title":"omega-3脂肪酸的膜调节作用:分子水平相互作用的分析。","authors":"Manuela A A Ayee, Brendan C Bunker, Jordan L De Groot","doi":"10.1016/bs.ctm.2020.08.001","DOIUrl":null,"url":null,"abstract":"<p><p>Bioactive omega-3 polyunsaturated fatty acids have been shown to reduce the risk of death in patients with cardiovascular disease and alleviate the symptoms of other inflammatory diseases. However, the mechanisms of action of these effects remain unclear. It has been postulated that omega-3 polyunsaturated fatty acids modify cell membranes by incorporation into the membrane and altering the signaling properties of cellular receptors. In this chapter, we explore the effects of omega-3 polyunsaturated fatty acids on cell membrane structure and function. We present a review of the current evidence for the health benefits of these compounds and explore the molecular mechanisms through which omega-3 polyunsaturated fatty acids interact with membrane lipids and modulate bilayer structure. Using computational models of multicomponent phospholipid bilayers, we assess the consequences of incorporation of these fatty acids on membrane lipid packing, water permeation, and membrane structure.</p>","PeriodicalId":11029,"journal":{"name":"Current topics in membranes","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/bs.ctm.2020.08.001","citationCount":"4","resultStr":"{\"title\":\"Membrane modulatory effects of omega-3 fatty acids: Analysis of molecular level interactions.\",\"authors\":\"Manuela A A Ayee, Brendan C Bunker, Jordan L De Groot\",\"doi\":\"10.1016/bs.ctm.2020.08.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Bioactive omega-3 polyunsaturated fatty acids have been shown to reduce the risk of death in patients with cardiovascular disease and alleviate the symptoms of other inflammatory diseases. However, the mechanisms of action of these effects remain unclear. It has been postulated that omega-3 polyunsaturated fatty acids modify cell membranes by incorporation into the membrane and altering the signaling properties of cellular receptors. In this chapter, we explore the effects of omega-3 polyunsaturated fatty acids on cell membrane structure and function. We present a review of the current evidence for the health benefits of these compounds and explore the molecular mechanisms through which omega-3 polyunsaturated fatty acids interact with membrane lipids and modulate bilayer structure. Using computational models of multicomponent phospholipid bilayers, we assess the consequences of incorporation of these fatty acids on membrane lipid packing, water permeation, and membrane structure.</p>\",\"PeriodicalId\":11029,\"journal\":{\"name\":\"Current topics in membranes\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/bs.ctm.2020.08.001\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current topics in membranes\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/bs.ctm.2020.08.001\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2020/9/14 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current topics in membranes","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/bs.ctm.2020.08.001","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/9/14 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
Membrane modulatory effects of omega-3 fatty acids: Analysis of molecular level interactions.
Bioactive omega-3 polyunsaturated fatty acids have been shown to reduce the risk of death in patients with cardiovascular disease and alleviate the symptoms of other inflammatory diseases. However, the mechanisms of action of these effects remain unclear. It has been postulated that omega-3 polyunsaturated fatty acids modify cell membranes by incorporation into the membrane and altering the signaling properties of cellular receptors. In this chapter, we explore the effects of omega-3 polyunsaturated fatty acids on cell membrane structure and function. We present a review of the current evidence for the health benefits of these compounds and explore the molecular mechanisms through which omega-3 polyunsaturated fatty acids interact with membrane lipids and modulate bilayer structure. Using computational models of multicomponent phospholipid bilayers, we assess the consequences of incorporation of these fatty acids on membrane lipid packing, water permeation, and membrane structure.
期刊介绍:
Current Topics in Membranes provides a systematic, comprehensive, and rigorous approach to specific topics relevant to the study of cellular membranes. Each volume is a guest edited compendium of membrane biology.