Karsten Gielis, Marie-Elena Vanden Abeele, Katrien Verbert, Jos Tournoy, Maarten De Vos, Vero Vanden Abeele
{"title":"通过克朗代克纸牌游戏中发现的认知表现的数字生物标志物检测轻度认知障碍:一项机器学习研究。","authors":"Karsten Gielis, Marie-Elena Vanden Abeele, Katrien Verbert, Jos Tournoy, Maarten De Vos, Vero Vanden Abeele","doi":"10.1159/000514105","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Mild cognitive impairment (MCI) is a condition that entails a slight yet noticeable decline in cognition that exceeds normal age-related changes. Older adults living with MCI have a higher chance of progressing to dementia, which warrants regular cognitive follow-up at memory clinics. However, due to time and resource constraints, this follow-up is conducted at separate moments in time with large intervals in between. Casual games, embedded into the daily life of older adults, may prove to be a less resource-intensive medium that yields continuous and rich data on a patient's cognition.</p><p><strong>Objective: </strong>To explore whether digital biomarkers of cognitive performance, found in the casual card game Klondike Solitaire, can be used to train machine-learning models to discern games played by older adults living with MCI from their healthy counterparts.</p><p><strong>Methods: </strong>Digital biomarkers of cognitive performance were captured from 23 healthy older adults and 23 older adults living with MCI, each playing 3 games of Solitaire with 3 different deck shuffles. These 3 deck shuffles were identical for each participant. Using a supervised stratified, 5-fold, cross-validated, machine-learning procedure, 19 different models were trained and optimized for F1 score.</p><p><strong>Results: </strong>The 3 best performing models, an Extra Trees model, a Gradient Boosting model, and a Nu-Support Vector Model, had a cross-validated F1 training score on the validation set of ≥0.792. The F1 score and AUC of the test set were, respectively, >0.811 and >0.877 for each of these models. These results indicate psychometric properties comparative to common cognitive screening tests.</p><p><strong>Conclusion: </strong>The results suggest that commercial card games, not developed to address specific mental processes, may be used for measuring cognition. The digital biomarkers derived from Klondike Solitaire show promise and may prove useful to fill the current blind spot between consultations.</p>","PeriodicalId":11242,"journal":{"name":"Digital Biomarkers","volume":"5 1","pages":"44-52"},"PeriodicalIF":0.0000,"publicationDate":"2021-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1159/000514105","citationCount":"7","resultStr":"{\"title\":\"Detecting Mild Cognitive Impairment via Digital Biomarkers of Cognitive Performance Found in Klondike Solitaire: A Machine-Learning Study.\",\"authors\":\"Karsten Gielis, Marie-Elena Vanden Abeele, Katrien Verbert, Jos Tournoy, Maarten De Vos, Vero Vanden Abeele\",\"doi\":\"10.1159/000514105\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Mild cognitive impairment (MCI) is a condition that entails a slight yet noticeable decline in cognition that exceeds normal age-related changes. Older adults living with MCI have a higher chance of progressing to dementia, which warrants regular cognitive follow-up at memory clinics. However, due to time and resource constraints, this follow-up is conducted at separate moments in time with large intervals in between. Casual games, embedded into the daily life of older adults, may prove to be a less resource-intensive medium that yields continuous and rich data on a patient's cognition.</p><p><strong>Objective: </strong>To explore whether digital biomarkers of cognitive performance, found in the casual card game Klondike Solitaire, can be used to train machine-learning models to discern games played by older adults living with MCI from their healthy counterparts.</p><p><strong>Methods: </strong>Digital biomarkers of cognitive performance were captured from 23 healthy older adults and 23 older adults living with MCI, each playing 3 games of Solitaire with 3 different deck shuffles. These 3 deck shuffles were identical for each participant. Using a supervised stratified, 5-fold, cross-validated, machine-learning procedure, 19 different models were trained and optimized for F1 score.</p><p><strong>Results: </strong>The 3 best performing models, an Extra Trees model, a Gradient Boosting model, and a Nu-Support Vector Model, had a cross-validated F1 training score on the validation set of ≥0.792. The F1 score and AUC of the test set were, respectively, >0.811 and >0.877 for each of these models. These results indicate psychometric properties comparative to common cognitive screening tests.</p><p><strong>Conclusion: </strong>The results suggest that commercial card games, not developed to address specific mental processes, may be used for measuring cognition. The digital biomarkers derived from Klondike Solitaire show promise and may prove useful to fill the current blind spot between consultations.</p>\",\"PeriodicalId\":11242,\"journal\":{\"name\":\"Digital Biomarkers\",\"volume\":\"5 1\",\"pages\":\"44-52\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-02-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1159/000514105\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Digital Biomarkers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1159/000514105\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital Biomarkers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1159/000514105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"Computer Science","Score":null,"Total":0}
Detecting Mild Cognitive Impairment via Digital Biomarkers of Cognitive Performance Found in Klondike Solitaire: A Machine-Learning Study.
Background: Mild cognitive impairment (MCI) is a condition that entails a slight yet noticeable decline in cognition that exceeds normal age-related changes. Older adults living with MCI have a higher chance of progressing to dementia, which warrants regular cognitive follow-up at memory clinics. However, due to time and resource constraints, this follow-up is conducted at separate moments in time with large intervals in between. Casual games, embedded into the daily life of older adults, may prove to be a less resource-intensive medium that yields continuous and rich data on a patient's cognition.
Objective: To explore whether digital biomarkers of cognitive performance, found in the casual card game Klondike Solitaire, can be used to train machine-learning models to discern games played by older adults living with MCI from their healthy counterparts.
Methods: Digital biomarkers of cognitive performance were captured from 23 healthy older adults and 23 older adults living with MCI, each playing 3 games of Solitaire with 3 different deck shuffles. These 3 deck shuffles were identical for each participant. Using a supervised stratified, 5-fold, cross-validated, machine-learning procedure, 19 different models were trained and optimized for F1 score.
Results: The 3 best performing models, an Extra Trees model, a Gradient Boosting model, and a Nu-Support Vector Model, had a cross-validated F1 training score on the validation set of ≥0.792. The F1 score and AUC of the test set were, respectively, >0.811 and >0.877 for each of these models. These results indicate psychometric properties comparative to common cognitive screening tests.
Conclusion: The results suggest that commercial card games, not developed to address specific mental processes, may be used for measuring cognition. The digital biomarkers derived from Klondike Solitaire show promise and may prove useful to fill the current blind spot between consultations.