纳米多孔材料的表征。

IF 4.4 2区 化学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
M Thommes, C Schlumberger
{"title":"纳米多孔材料的表征。","authors":"M Thommes,&nbsp;C Schlumberger","doi":"10.1146/annurev-chembioeng-061720-081242","DOIUrl":null,"url":null,"abstract":"<p><p>Detailed analysis of textural properties, e.g., pore size and connectivity, of nanoporous materials is essential to identify correlations of these properties with the performance of gas storage, separation, and catalysis processes. The advances in developing nanoporous materials with uniform, tailor-made pore structures, including the introduction of hierarchical pore systems, offer huge potential for these applications. Within this context, major progress has been made in understanding the adsorption and phase behavior of confined fluids and consequently in physisorption characterization. This enables reliable pore size, volume, and network connectivity analysis using advanced, high-resolution experimental protocols coupled with advanced methods based on statistical mechanics, such as methods based on density functional theory and molecular simulation. If macro-pores are present, a combination of adsorption and mercury porosimetry can be useful. Hence, some important recent advances in understanding the mercury intrusion/extrusion mechanism are discussed. Additionally, some promising complementary techniques for characterization of porous materials immersed in a liquid phase are introduced.</p>","PeriodicalId":7,"journal":{"name":"ACS Applied Polymer Materials","volume":" ","pages":"137-162"},"PeriodicalIF":4.4000,"publicationDate":"2021-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"Characterization of Nanoporous Materials.\",\"authors\":\"M Thommes,&nbsp;C Schlumberger\",\"doi\":\"10.1146/annurev-chembioeng-061720-081242\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Detailed analysis of textural properties, e.g., pore size and connectivity, of nanoporous materials is essential to identify correlations of these properties with the performance of gas storage, separation, and catalysis processes. The advances in developing nanoporous materials with uniform, tailor-made pore structures, including the introduction of hierarchical pore systems, offer huge potential for these applications. Within this context, major progress has been made in understanding the adsorption and phase behavior of confined fluids and consequently in physisorption characterization. This enables reliable pore size, volume, and network connectivity analysis using advanced, high-resolution experimental protocols coupled with advanced methods based on statistical mechanics, such as methods based on density functional theory and molecular simulation. If macro-pores are present, a combination of adsorption and mercury porosimetry can be useful. Hence, some important recent advances in understanding the mercury intrusion/extrusion mechanism are discussed. Additionally, some promising complementary techniques for characterization of porous materials immersed in a liquid phase are introduced.</p>\",\"PeriodicalId\":7,\"journal\":{\"name\":\"ACS Applied Polymer Materials\",\"volume\":\" \",\"pages\":\"137-162\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2021-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Polymer Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1146/annurev-chembioeng-061720-081242\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/3/26 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Polymer Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1146/annurev-chembioeng-061720-081242","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/3/26 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 20

摘要

详细分析纳米多孔材料的结构特性,例如孔径和连通性,对于确定这些特性与气体储存、分离和催化过程性能之间的相关性至关重要。在开发具有均匀、定制孔结构的纳米多孔材料方面取得的进展,包括引入分层孔系统,为这些应用提供了巨大的潜力。在此背景下,在理解受限流体的吸附和相行为以及物理吸附表征方面取得了重大进展。利用先进的高分辨率实验协议,结合基于统计力学的先进方法(如基于密度泛函理论和分子模拟的方法),可以实现可靠的孔径、体积和网络连通性分析。如果存在大孔隙,则吸附法和汞孔隙测定法的结合是有用的。因此,本文讨论了近年来在了解汞侵入/挤压机制方面的一些重要进展。此外,介绍了一些有前途的互补技术,用于表征浸泡在液相中的多孔材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Characterization of Nanoporous Materials.

Detailed analysis of textural properties, e.g., pore size and connectivity, of nanoporous materials is essential to identify correlations of these properties with the performance of gas storage, separation, and catalysis processes. The advances in developing nanoporous materials with uniform, tailor-made pore structures, including the introduction of hierarchical pore systems, offer huge potential for these applications. Within this context, major progress has been made in understanding the adsorption and phase behavior of confined fluids and consequently in physisorption characterization. This enables reliable pore size, volume, and network connectivity analysis using advanced, high-resolution experimental protocols coupled with advanced methods based on statistical mechanics, such as methods based on density functional theory and molecular simulation. If macro-pores are present, a combination of adsorption and mercury porosimetry can be useful. Hence, some important recent advances in understanding the mercury intrusion/extrusion mechanism are discussed. Additionally, some promising complementary techniques for characterization of porous materials immersed in a liquid phase are introduced.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
6.00%
发文量
810
期刊介绍: ACS Applied Polymer Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics, and biology relevant to applications of polymers. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates fundamental knowledge in the areas of materials, engineering, physics, bioscience, polymer science and chemistry into important polymer applications. The journal is specifically interested in work that addresses relationships among structure, processing, morphology, chemistry, properties, and function as well as work that provide insights into mechanisms critical to the performance of the polymer for applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信