Yang Chen, Ju Dong, Dongqing Yang, Qin Qian, Pengcheng Wang, Xiaojuan Yang, Wei Li, Guochun Li, Xu Shen, Fushun Wang
{"title":"中药亮血通瘀方治疗急性脑出血中风的协同网络药理学研究。","authors":"Yang Chen, Ju Dong, Dongqing Yang, Qin Qian, Pengcheng Wang, Xiaojuan Yang, Wei Li, Guochun Li, Xu Shen, Fushun Wang","doi":"10.1155/2021/8874296","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Nowadays, acute intracerebral hemorrhage stroke (AICH) still causes higher mortality. Liangxue Tongyu Formula (LXTYF), originating from a traditional Chinese medicine (TCM) prescription, is widely used as auxiliary treatment for AICH.</p><p><strong>Objective: </strong>To dig into the multicomponent, multitarget, and multipathway mechanism of LXTYF on treating AICH via network pharmacology and RNA-seq.</p><p><strong>Methods: </strong>Network pharmacology analysis was used by ingredient collection, target exploration and prediction, network construction, and Gene Ontology (GO) and KEGG analysis, with the Cytoscape software and ClusterProfiler package in R. The RNA-seq data of the AICH-rats were analyzed for differential expression and functional enrichments. Herb-Compound-Target-Pathway (H-C-T-P) network was shown to clarify the mechanism of LXTYF for AICH.</p><p><strong>Results: </strong>76 active ingredients (quercetin, Alanine, kaempferol, etc.) of LXTYF and 376 putative targets to alleviate AICH (PTGS2, PTGS1, ESR1, etc.) were successfully identified. The protein-protein interaction (PPI) network indicated the important role of STAT3. The functional enrichment of GO and KEGG pathway showed that LXTYF is most likely to influence MAPK and PI3K-Akt signaling pathways for AICH treatment. From the RNA-seq of AICH-rats, 583 differential mRNAs were identified and 14 of them were consistent with the putative targets of LXTYF for AICH treatment. The KEGG pathway enrichment also implied that the MAPK signaling pathway was the most correlated one among all the related signaling pathways. Many important targets with expression changes of LXTYF for AICH treatment and their related pathways are great markers of antioxidation, anti-inflammatory, antiapoptosis, and lowering blood pressure, which indicated that LXTYF may play mutiroles in the mechanisms for AICH treatment.</p><p><strong>Conclusion: </strong>The LXTYF attenuates AICH partially by antioxidation, anti-inflammatory, and antiapoptosis and lowers blood pressure roles through regulating the targets involved MAPK, calcium, apoptosis, and TNF signaling pathway, which provide notable clues for further experimental validation.</p>","PeriodicalId":19122,"journal":{"name":"Neural Plasticity","volume":"2021 ","pages":"8874296"},"PeriodicalIF":3.1000,"publicationDate":"2021-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7936909/pdf/","citationCount":"3","resultStr":"{\"title\":\"Synergistic Network Pharmacology for Traditional Chinese Medicine Liangxue Tongyu Formula in Acute Intracerebral Hemorrhagic Stroke.\",\"authors\":\"Yang Chen, Ju Dong, Dongqing Yang, Qin Qian, Pengcheng Wang, Xiaojuan Yang, Wei Li, Guochun Li, Xu Shen, Fushun Wang\",\"doi\":\"10.1155/2021/8874296\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Nowadays, acute intracerebral hemorrhage stroke (AICH) still causes higher mortality. Liangxue Tongyu Formula (LXTYF), originating from a traditional Chinese medicine (TCM) prescription, is widely used as auxiliary treatment for AICH.</p><p><strong>Objective: </strong>To dig into the multicomponent, multitarget, and multipathway mechanism of LXTYF on treating AICH via network pharmacology and RNA-seq.</p><p><strong>Methods: </strong>Network pharmacology analysis was used by ingredient collection, target exploration and prediction, network construction, and Gene Ontology (GO) and KEGG analysis, with the Cytoscape software and ClusterProfiler package in R. The RNA-seq data of the AICH-rats were analyzed for differential expression and functional enrichments. Herb-Compound-Target-Pathway (H-C-T-P) network was shown to clarify the mechanism of LXTYF for AICH.</p><p><strong>Results: </strong>76 active ingredients (quercetin, Alanine, kaempferol, etc.) of LXTYF and 376 putative targets to alleviate AICH (PTGS2, PTGS1, ESR1, etc.) were successfully identified. The protein-protein interaction (PPI) network indicated the important role of STAT3. The functional enrichment of GO and KEGG pathway showed that LXTYF is most likely to influence MAPK and PI3K-Akt signaling pathways for AICH treatment. From the RNA-seq of AICH-rats, 583 differential mRNAs were identified and 14 of them were consistent with the putative targets of LXTYF for AICH treatment. The KEGG pathway enrichment also implied that the MAPK signaling pathway was the most correlated one among all the related signaling pathways. Many important targets with expression changes of LXTYF for AICH treatment and their related pathways are great markers of antioxidation, anti-inflammatory, antiapoptosis, and lowering blood pressure, which indicated that LXTYF may play mutiroles in the mechanisms for AICH treatment.</p><p><strong>Conclusion: </strong>The LXTYF attenuates AICH partially by antioxidation, anti-inflammatory, and antiapoptosis and lowers blood pressure roles through regulating the targets involved MAPK, calcium, apoptosis, and TNF signaling pathway, which provide notable clues for further experimental validation.</p>\",\"PeriodicalId\":19122,\"journal\":{\"name\":\"Neural Plasticity\",\"volume\":\"2021 \",\"pages\":\"8874296\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2021-02-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7936909/pdf/\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neural Plasticity\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1155/2021/8874296\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Plasticity","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1155/2021/8874296","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
Synergistic Network Pharmacology for Traditional Chinese Medicine Liangxue Tongyu Formula in Acute Intracerebral Hemorrhagic Stroke.
Background: Nowadays, acute intracerebral hemorrhage stroke (AICH) still causes higher mortality. Liangxue Tongyu Formula (LXTYF), originating from a traditional Chinese medicine (TCM) prescription, is widely used as auxiliary treatment for AICH.
Objective: To dig into the multicomponent, multitarget, and multipathway mechanism of LXTYF on treating AICH via network pharmacology and RNA-seq.
Methods: Network pharmacology analysis was used by ingredient collection, target exploration and prediction, network construction, and Gene Ontology (GO) and KEGG analysis, with the Cytoscape software and ClusterProfiler package in R. The RNA-seq data of the AICH-rats were analyzed for differential expression and functional enrichments. Herb-Compound-Target-Pathway (H-C-T-P) network was shown to clarify the mechanism of LXTYF for AICH.
Results: 76 active ingredients (quercetin, Alanine, kaempferol, etc.) of LXTYF and 376 putative targets to alleviate AICH (PTGS2, PTGS1, ESR1, etc.) were successfully identified. The protein-protein interaction (PPI) network indicated the important role of STAT3. The functional enrichment of GO and KEGG pathway showed that LXTYF is most likely to influence MAPK and PI3K-Akt signaling pathways for AICH treatment. From the RNA-seq of AICH-rats, 583 differential mRNAs were identified and 14 of them were consistent with the putative targets of LXTYF for AICH treatment. The KEGG pathway enrichment also implied that the MAPK signaling pathway was the most correlated one among all the related signaling pathways. Many important targets with expression changes of LXTYF for AICH treatment and their related pathways are great markers of antioxidation, anti-inflammatory, antiapoptosis, and lowering blood pressure, which indicated that LXTYF may play mutiroles in the mechanisms for AICH treatment.
Conclusion: The LXTYF attenuates AICH partially by antioxidation, anti-inflammatory, and antiapoptosis and lowers blood pressure roles through regulating the targets involved MAPK, calcium, apoptosis, and TNF signaling pathway, which provide notable clues for further experimental validation.
期刊介绍:
Neural Plasticity is an international, interdisciplinary journal dedicated to the publication of articles related to all aspects of neural plasticity, with special emphasis on its functional significance as reflected in behavior and in psychopathology. Neural Plasticity publishes research and review articles from the entire range of relevant disciplines, including basic neuroscience, behavioral neuroscience, cognitive neuroscience, biological psychology, and biological psychiatry.