{"title":"紫柳柳中SKOR钾通道的分离及功能测定。","authors":"Yahui Chen, Xuefeng Peng, Jijie Cui, Hongxia Zhang, Jiang Jiang, Zhizhong Song","doi":"10.1155/2021/6669509","DOIUrl":null,"url":null,"abstract":"<div>\n <p>Potassium (K<sup>+</sup>) plays key roles in plant growth and development. However, molecular mechanism studies of K<sup>+</sup> nutrition in forest plants are largely rare. In plants, <i>SKOR</i> gene encodes for the outward rectifying Shaker-type K<sup>+</sup> channel that is responsible for the long-distance transportation of K<sup>+</sup> through xylem in roots. In this study, we determined a Shaker-type K<sup>+</sup> channel gene in purple osier (<i>Salix purpurea</i>), designated as <i>SpuSKOR</i>, and determined its function using a patch clamp electrophysiological system. SpuSKOR was closely clustered with poplar PtrSKOR in the phylogenetic tree. Quantitative real-time PCR (qRT-PCR) analyses demonstrated that <i>SpuSKOR</i> was predominantly expressed in roots, and expression decreased under K<sup>+</sup> depletion conditions. Patch clamp analysis via HEK293-T cells demonstrated that the activity of the SpuSKOR channel was activated when the cell membrane voltage reached at -10 mV, and the channel activity was enhanced along with the increase of membrane voltage. Outward currents were recorded and induced in response to the decrease of external K<sup>+</sup> concentration. Our results indicate that SpuSKOR is a typical voltage dependent outwardly rectifying K<sup>+</sup> channel in purple osier. This study provides theoretical basis for revealing the mechanism of K<sup>+</sup> transport and distribution in woody plants.</p>\n </div>","PeriodicalId":55239,"journal":{"name":"Comparative and Functional Genomics","volume":"2021 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7932800/pdf/","citationCount":"0","resultStr":"{\"title\":\"Isolation and Functional Determination of SKOR Potassium Channel in Purple Osier Willow, Salix purpurea\",\"authors\":\"Yahui Chen, Xuefeng Peng, Jijie Cui, Hongxia Zhang, Jiang Jiang, Zhizhong Song\",\"doi\":\"10.1155/2021/6669509\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n <p>Potassium (K<sup>+</sup>) plays key roles in plant growth and development. However, molecular mechanism studies of K<sup>+</sup> nutrition in forest plants are largely rare. In plants, <i>SKOR</i> gene encodes for the outward rectifying Shaker-type K<sup>+</sup> channel that is responsible for the long-distance transportation of K<sup>+</sup> through xylem in roots. In this study, we determined a Shaker-type K<sup>+</sup> channel gene in purple osier (<i>Salix purpurea</i>), designated as <i>SpuSKOR</i>, and determined its function using a patch clamp electrophysiological system. SpuSKOR was closely clustered with poplar PtrSKOR in the phylogenetic tree. Quantitative real-time PCR (qRT-PCR) analyses demonstrated that <i>SpuSKOR</i> was predominantly expressed in roots, and expression decreased under K<sup>+</sup> depletion conditions. Patch clamp analysis via HEK293-T cells demonstrated that the activity of the SpuSKOR channel was activated when the cell membrane voltage reached at -10 mV, and the channel activity was enhanced along with the increase of membrane voltage. Outward currents were recorded and induced in response to the decrease of external K<sup>+</sup> concentration. Our results indicate that SpuSKOR is a typical voltage dependent outwardly rectifying K<sup>+</sup> channel in purple osier. This study provides theoretical basis for revealing the mechanism of K<sup>+</sup> transport and distribution in woody plants.</p>\\n </div>\",\"PeriodicalId\":55239,\"journal\":{\"name\":\"Comparative and Functional Genomics\",\"volume\":\"2021 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-02-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7932800/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Comparative and Functional Genomics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1155/2021/6669509\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comparative and Functional Genomics","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/2021/6669509","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Isolation and Functional Determination of SKOR Potassium Channel in Purple Osier Willow, Salix purpurea
Potassium (K+) plays key roles in plant growth and development. However, molecular mechanism studies of K+ nutrition in forest plants are largely rare. In plants, SKOR gene encodes for the outward rectifying Shaker-type K+ channel that is responsible for the long-distance transportation of K+ through xylem in roots. In this study, we determined a Shaker-type K+ channel gene in purple osier (Salix purpurea), designated as SpuSKOR, and determined its function using a patch clamp electrophysiological system. SpuSKOR was closely clustered with poplar PtrSKOR in the phylogenetic tree. Quantitative real-time PCR (qRT-PCR) analyses demonstrated that SpuSKOR was predominantly expressed in roots, and expression decreased under K+ depletion conditions. Patch clamp analysis via HEK293-T cells demonstrated that the activity of the SpuSKOR channel was activated when the cell membrane voltage reached at -10 mV, and the channel activity was enhanced along with the increase of membrane voltage. Outward currents were recorded and induced in response to the decrease of external K+ concentration. Our results indicate that SpuSKOR is a typical voltage dependent outwardly rectifying K+ channel in purple osier. This study provides theoretical basis for revealing the mechanism of K+ transport and distribution in woody plants.