Inkyung Park, Minah Kim, Tae Young Lee, Wu Jeong Hwang, Yoo Bin Kwak, Sanghoon Oh, Silvia Kyungjin Lho, Sun-Young Moon, Jun Soo Kwon
{"title":"高基因负荷精神分裂症患者未受影响亲属的后内侧皮质皮质回旋减少。","authors":"Inkyung Park, Minah Kim, Tae Young Lee, Wu Jeong Hwang, Yoo Bin Kwak, Sanghoon Oh, Silvia Kyungjin Lho, Sun-Young Moon, Jun Soo Kwon","doi":"10.1038/s41537-021-00148-1","DOIUrl":null,"url":null,"abstract":"<p><p>Although abnormal cortical gyrification has been consistently reported in patients with schizophrenia, whether gyrification abnormalities reflect a genetic risk for the disorder remains unknown. This study investigated differences in cortical gyrification between unaffected relatives (URs) with high genetic loading for schizophrenia and healthy controls (HCs) to identify potential genetic vulnerability markers. A total of 50 URs of schizophrenia patients and 50 matched HCs underwent T1-weighted magnetic resonance imaging to compare whole-brain gyrification using the local gyrification index (lGI). Then, the lGI clusters showing significant differences were compared between the UR subgroups based on the number of first-degree relatives with schizophrenia to identify the effect of genetic loading on cortical gyrification changes. The URs exhibited significantly lower cortical gyrification than the HCs in clusters including medial parieto-occipital and cingulate regions comprising the bilateral precuneus, cuneus, pericalcarine, lingual, isthmus cingulate, and posterior cingulate gyri. Moreover, URs who had two or more first-degree relatives with schizophrenia showed greater gyrification reductions in these clusters than those who had at least one first-degree relative with schizophrenia. Our findings of reduced gyrification in URs, which are consistent with accumulated evidence of hypogyria observed in regions showing patient-control differences in previous studies, highlight that such hypogyria in posteromedial regions may serve as a genetic vulnerability marker and reflect early neurodevelopmental abnormalities resulting from a genetic risk for schizophrenia.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":null,"pages":null},"PeriodicalIF":8.3000,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1038/s41537-021-00148-1","citationCount":"6","resultStr":"{\"title\":\"Reduced cortical gyrification in the posteromedial cortex in unaffected relatives of schizophrenia patients with high genetic loading.\",\"authors\":\"Inkyung Park, Minah Kim, Tae Young Lee, Wu Jeong Hwang, Yoo Bin Kwak, Sanghoon Oh, Silvia Kyungjin Lho, Sun-Young Moon, Jun Soo Kwon\",\"doi\":\"10.1038/s41537-021-00148-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Although abnormal cortical gyrification has been consistently reported in patients with schizophrenia, whether gyrification abnormalities reflect a genetic risk for the disorder remains unknown. This study investigated differences in cortical gyrification between unaffected relatives (URs) with high genetic loading for schizophrenia and healthy controls (HCs) to identify potential genetic vulnerability markers. A total of 50 URs of schizophrenia patients and 50 matched HCs underwent T1-weighted magnetic resonance imaging to compare whole-brain gyrification using the local gyrification index (lGI). Then, the lGI clusters showing significant differences were compared between the UR subgroups based on the number of first-degree relatives with schizophrenia to identify the effect of genetic loading on cortical gyrification changes. The URs exhibited significantly lower cortical gyrification than the HCs in clusters including medial parieto-occipital and cingulate regions comprising the bilateral precuneus, cuneus, pericalcarine, lingual, isthmus cingulate, and posterior cingulate gyri. Moreover, URs who had two or more first-degree relatives with schizophrenia showed greater gyrification reductions in these clusters than those who had at least one first-degree relative with schizophrenia. Our findings of reduced gyrification in URs, which are consistent with accumulated evidence of hypogyria observed in regions showing patient-control differences in previous studies, highlight that such hypogyria in posteromedial regions may serve as a genetic vulnerability marker and reflect early neurodevelopmental abnormalities resulting from a genetic risk for schizophrenia.</p>\",\"PeriodicalId\":5,\"journal\":{\"name\":\"ACS Applied Materials & Interfaces\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2021-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1038/s41537-021-00148-1\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Materials & Interfaces\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1038/s41537-021-00148-1\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41537-021-00148-1","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Reduced cortical gyrification in the posteromedial cortex in unaffected relatives of schizophrenia patients with high genetic loading.
Although abnormal cortical gyrification has been consistently reported in patients with schizophrenia, whether gyrification abnormalities reflect a genetic risk for the disorder remains unknown. This study investigated differences in cortical gyrification between unaffected relatives (URs) with high genetic loading for schizophrenia and healthy controls (HCs) to identify potential genetic vulnerability markers. A total of 50 URs of schizophrenia patients and 50 matched HCs underwent T1-weighted magnetic resonance imaging to compare whole-brain gyrification using the local gyrification index (lGI). Then, the lGI clusters showing significant differences were compared between the UR subgroups based on the number of first-degree relatives with schizophrenia to identify the effect of genetic loading on cortical gyrification changes. The URs exhibited significantly lower cortical gyrification than the HCs in clusters including medial parieto-occipital and cingulate regions comprising the bilateral precuneus, cuneus, pericalcarine, lingual, isthmus cingulate, and posterior cingulate gyri. Moreover, URs who had two or more first-degree relatives with schizophrenia showed greater gyrification reductions in these clusters than those who had at least one first-degree relative with schizophrenia. Our findings of reduced gyrification in URs, which are consistent with accumulated evidence of hypogyria observed in regions showing patient-control differences in previous studies, highlight that such hypogyria in posteromedial regions may serve as a genetic vulnerability marker and reflect early neurodevelopmental abnormalities resulting from a genetic risk for schizophrenia.
期刊介绍:
ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.