转座因子的全面定位揭示了野生甲虫染色体上不同的元素积累模式。

IF 2.4 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Chromosome Research Pub Date : 2021-06-01 Epub Date: 2021-02-27 DOI:10.1007/s10577-021-09655-4
Igor Costa Amorim, Cibele Gomes Sotero-Caio, Rafaelle Grazielle Coelho Costa, Crislaine Xavier, Rita de Cássia de Moura
{"title":"转座因子的全面定位揭示了野生甲虫染色体上不同的元素积累模式。","authors":"Igor Costa Amorim,&nbsp;Cibele Gomes Sotero-Caio,&nbsp;Rafaelle Grazielle Coelho Costa,&nbsp;Crislaine Xavier,&nbsp;Rita de Cássia de Moura","doi":"10.1007/s10577-021-09655-4","DOIUrl":null,"url":null,"abstract":"<p><p>Over the past decades, transposable elements (TEs) have been shown to play important roles shaping genome architecture and as major promoters of genetic diversification and evolution of species. Likewise, TE accumulation is tightly linked to heterochromatinization and centromeric dynamics, which can ultimately contribute to speciation. Despite growing efforts to characterize the repeat landscape of species, few studies have focused on mapping the accumulation profiles of TEs on chromosomes. The few studies on repeat accumulation profiles in populations are biased towards model organisms and inbred lineages. Here, we present a cytomolecular analysis of six mobilome-extracted elements on multiple individuals from a population of a species of wild-captured beetle, Dichotomius schiffleri, aiming to investigate patterns of TE accumulation and uncover possible trends of their chromosomal distribution. Compiling TE distribution data from several individuals allowed us to make generalizations regarding variation of TEs at the gross chromosome level unlikely to have been achieved using a single individual, or even from a whole-genome assembly. We found that (1) transposable elements have differential accumulation profiles on D. schiffleri chromosomes and (2) specific chromosomes have their own TE accumulation landscape. The remarkable variability of their genomic distribution suggests that TEs are likely candidates to contribute to the evolution of heterochromatin architecture and promote high genetic variability in species that otherwise display conserved karyotypes. Therefore, this variation likely contributed to genome evolution and species diversification in Dichotomius.</p>","PeriodicalId":50698,"journal":{"name":"Chromosome Research","volume":"29 2","pages":"203-218"},"PeriodicalIF":2.4000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s10577-021-09655-4","citationCount":"4","resultStr":"{\"title\":\"Comprehensive mapping of transposable elements reveals distinct patterns of element accumulation on chromosomes of wild beetles.\",\"authors\":\"Igor Costa Amorim,&nbsp;Cibele Gomes Sotero-Caio,&nbsp;Rafaelle Grazielle Coelho Costa,&nbsp;Crislaine Xavier,&nbsp;Rita de Cássia de Moura\",\"doi\":\"10.1007/s10577-021-09655-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Over the past decades, transposable elements (TEs) have been shown to play important roles shaping genome architecture and as major promoters of genetic diversification and evolution of species. Likewise, TE accumulation is tightly linked to heterochromatinization and centromeric dynamics, which can ultimately contribute to speciation. Despite growing efforts to characterize the repeat landscape of species, few studies have focused on mapping the accumulation profiles of TEs on chromosomes. The few studies on repeat accumulation profiles in populations are biased towards model organisms and inbred lineages. Here, we present a cytomolecular analysis of six mobilome-extracted elements on multiple individuals from a population of a species of wild-captured beetle, Dichotomius schiffleri, aiming to investigate patterns of TE accumulation and uncover possible trends of their chromosomal distribution. Compiling TE distribution data from several individuals allowed us to make generalizations regarding variation of TEs at the gross chromosome level unlikely to have been achieved using a single individual, or even from a whole-genome assembly. We found that (1) transposable elements have differential accumulation profiles on D. schiffleri chromosomes and (2) specific chromosomes have their own TE accumulation landscape. The remarkable variability of their genomic distribution suggests that TEs are likely candidates to contribute to the evolution of heterochromatin architecture and promote high genetic variability in species that otherwise display conserved karyotypes. Therefore, this variation likely contributed to genome evolution and species diversification in Dichotomius.</p>\",\"PeriodicalId\":50698,\"journal\":{\"name\":\"Chromosome Research\",\"volume\":\"29 2\",\"pages\":\"203-218\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2021-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s10577-021-09655-4\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chromosome Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s10577-021-09655-4\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/2/27 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chromosome Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10577-021-09655-4","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/2/27 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 4

摘要

在过去的几十年里,转座因子(te)已被证明在塑造基因组结构中发挥重要作用,并作为物种遗传多样化和进化的主要促进因素。同样,TE积累与异染色质化和着丝动力学密切相关,最终有助于物种形成。尽管越来越多的研究致力于描述物种的重复景观,但很少有研究关注于绘制te在染色体上的积累谱。少数关于群体重复积累谱的研究偏向于模式生物和近交系。在此,我们对一种野生捕获的schiffleri甲虫种群中多个个体的6个移动体提取元素进行了细胞分子分析,旨在研究TE积累模式并揭示其染色体分布的可能趋势。汇编来自几个个体的TE分布数据使我们能够在总染色体水平上对TE的变异进行概括,这是不可能通过单个个体甚至全基因组组装获得的。我们发现:(1)转座因子在schiffleri染色体上有不同的积累曲线;(2)特定染色体有自己的TE积累景观。它们基因组分布的显著可变性表明,te可能是促成异染色质结构进化的候选者,并在其他情况下显示保守核型的物种中促进高遗传变异性。因此,这种变异可能促进了二歧蝽的基因组进化和物种多样化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comprehensive mapping of transposable elements reveals distinct patterns of element accumulation on chromosomes of wild beetles.

Over the past decades, transposable elements (TEs) have been shown to play important roles shaping genome architecture and as major promoters of genetic diversification and evolution of species. Likewise, TE accumulation is tightly linked to heterochromatinization and centromeric dynamics, which can ultimately contribute to speciation. Despite growing efforts to characterize the repeat landscape of species, few studies have focused on mapping the accumulation profiles of TEs on chromosomes. The few studies on repeat accumulation profiles in populations are biased towards model organisms and inbred lineages. Here, we present a cytomolecular analysis of six mobilome-extracted elements on multiple individuals from a population of a species of wild-captured beetle, Dichotomius schiffleri, aiming to investigate patterns of TE accumulation and uncover possible trends of their chromosomal distribution. Compiling TE distribution data from several individuals allowed us to make generalizations regarding variation of TEs at the gross chromosome level unlikely to have been achieved using a single individual, or even from a whole-genome assembly. We found that (1) transposable elements have differential accumulation profiles on D. schiffleri chromosomes and (2) specific chromosomes have their own TE accumulation landscape. The remarkable variability of their genomic distribution suggests that TEs are likely candidates to contribute to the evolution of heterochromatin architecture and promote high genetic variability in species that otherwise display conserved karyotypes. Therefore, this variation likely contributed to genome evolution and species diversification in Dichotomius.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chromosome Research
Chromosome Research 生物-生化与分子生物学
CiteScore
4.70
自引率
3.80%
发文量
31
审稿时长
1 months
期刊介绍: Chromosome Research publishes manuscripts from work based on all organisms and encourages submissions in the following areas including, but not limited, to: · Chromosomes and their linkage to diseases; · Chromosome organization within the nucleus; · Chromatin biology (transcription, non-coding RNA, etc); · Chromosome structure, function and mechanics; · Chromosome and DNA repair; · Epigenetic chromosomal functions (centromeres, telomeres, replication, imprinting, dosage compensation, sex determination, chromosome remodeling); · Architectural/epigenomic organization of the genome; · Functional annotation of the genome; · Functional and comparative genomics in plants and animals; · Karyology studies that help resolve difficult taxonomic problems or that provide clues to fundamental mechanisms of genome and karyotype evolution in plants and animals; · Mitosis and Meiosis; · Cancer cytogenomics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信