{"title":"两种不同酵母中不同醇的双重特性。","authors":"Nitin Mahendra Chauhan, S Mohan Karuppayil","doi":"10.1080/21501203.2020.1837976","DOIUrl":null,"url":null,"abstract":"<p><p>Most of the yeast bypasses the developmental stage from simple unicellular yeast to elongated structure like hyphae. Regulation of this transition is governed by various quorum sensing and signalling molecules produced under different conditions of growth, that differ significantly, both physiologically and chemically. The evidence of fungal quorum sensing was uncovered ten years ago after the discovery of farnesol as first eukaryotic quorum sensing molecules in Candida albicans. In addition to farnesol, tyrosol was identified as second quorum sensing molecules in C. albicans controlling physiological activities. After the discovery of farnesol and tyrosol, regulation of morphogenesis through the production of chemical signalling molecules such as isoamyl alcohol, 2-phenylethyl alcohol, 1-dodecanol, E-nerolidol, etc. is reported in C. albicans. Some of the evidence suggests that the budding yeast Saccharomyces cerevisiae exhibits this type of regulation and the signals are regulated by aromatic alcohols which are the end product of amino acid metabolism. The effects of these molecules on morphogenesis are not similar in both yeasts, making comparisons hard. It is hypothesized that these signals works in microorganisms to derive a competitive advantage. Here, we present an example for utilization of competitive strategy by C. albicans and S. cerevisiae over other microorganisms.</p>","PeriodicalId":18833,"journal":{"name":"Mycology","volume":"12 1","pages":"25-38"},"PeriodicalIF":4.6000,"publicationDate":"2020-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/21501203.2020.1837976","citationCount":"8","resultStr":"{\"title\":\"Dual identities for various alcohols in two different yeasts.\",\"authors\":\"Nitin Mahendra Chauhan, S Mohan Karuppayil\",\"doi\":\"10.1080/21501203.2020.1837976\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Most of the yeast bypasses the developmental stage from simple unicellular yeast to elongated structure like hyphae. Regulation of this transition is governed by various quorum sensing and signalling molecules produced under different conditions of growth, that differ significantly, both physiologically and chemically. The evidence of fungal quorum sensing was uncovered ten years ago after the discovery of farnesol as first eukaryotic quorum sensing molecules in Candida albicans. In addition to farnesol, tyrosol was identified as second quorum sensing molecules in C. albicans controlling physiological activities. After the discovery of farnesol and tyrosol, regulation of morphogenesis through the production of chemical signalling molecules such as isoamyl alcohol, 2-phenylethyl alcohol, 1-dodecanol, E-nerolidol, etc. is reported in C. albicans. Some of the evidence suggests that the budding yeast Saccharomyces cerevisiae exhibits this type of regulation and the signals are regulated by aromatic alcohols which are the end product of amino acid metabolism. The effects of these molecules on morphogenesis are not similar in both yeasts, making comparisons hard. It is hypothesized that these signals works in microorganisms to derive a competitive advantage. Here, we present an example for utilization of competitive strategy by C. albicans and S. cerevisiae over other microorganisms.</p>\",\"PeriodicalId\":18833,\"journal\":{\"name\":\"Mycology\",\"volume\":\"12 1\",\"pages\":\"25-38\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2020-12-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/21501203.2020.1837976\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mycology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/21501203.2020.1837976\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MYCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mycology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/21501203.2020.1837976","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MYCOLOGY","Score":null,"Total":0}
Dual identities for various alcohols in two different yeasts.
Most of the yeast bypasses the developmental stage from simple unicellular yeast to elongated structure like hyphae. Regulation of this transition is governed by various quorum sensing and signalling molecules produced under different conditions of growth, that differ significantly, both physiologically and chemically. The evidence of fungal quorum sensing was uncovered ten years ago after the discovery of farnesol as first eukaryotic quorum sensing molecules in Candida albicans. In addition to farnesol, tyrosol was identified as second quorum sensing molecules in C. albicans controlling physiological activities. After the discovery of farnesol and tyrosol, regulation of morphogenesis through the production of chemical signalling molecules such as isoamyl alcohol, 2-phenylethyl alcohol, 1-dodecanol, E-nerolidol, etc. is reported in C. albicans. Some of the evidence suggests that the budding yeast Saccharomyces cerevisiae exhibits this type of regulation and the signals are regulated by aromatic alcohols which are the end product of amino acid metabolism. The effects of these molecules on morphogenesis are not similar in both yeasts, making comparisons hard. It is hypothesized that these signals works in microorganisms to derive a competitive advantage. Here, we present an example for utilization of competitive strategy by C. albicans and S. cerevisiae over other microorganisms.