估计神经群活动线性积分器模型中的费雪判别误差

IF 2.3 4区 医学 Q1 Neuroscience
Matias Calderini, Jean-Philippe Thivierge
{"title":"估计神经群活动线性积分器模型中的费雪判别误差","authors":"Matias Calderini, Jean-Philippe Thivierge","doi":"10.1186/s13408-021-00104-4","DOIUrl":null,"url":null,"abstract":"<p><p>Decoding approaches provide a useful means of estimating the information contained in neuronal circuits. In this work, we analyze the expected classification error of a decoder based on Fisher linear discriminant analysis. We provide expressions that relate decoding error to the specific parameters of a population model that performs linear integration of sensory input. Results show conditions that lead to beneficial and detrimental effects of noise correlation on decoding. Further, the proposed framework sheds light on the contribution of neuronal noise, highlighting cases where, counter-intuitively, increased noise may lead to improved decoding performance. Finally, we examined the impact of dynamical parameters, including neuronal leak and integration time constant, on decoding. Overall, this work presents a fruitful approach to the study of decoding using a comprehensive theoretical framework that merges dynamical parameters with estimates of readout error.</p>","PeriodicalId":54271,"journal":{"name":"Journal of Mathematical Neuroscience","volume":"11 1","pages":"6"},"PeriodicalIF":2.3000,"publicationDate":"2021-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7895896/pdf/","citationCount":"0","resultStr":"{\"title\":\"Estimating Fisher discriminant error in a linear integrator model of neural population activity.\",\"authors\":\"Matias Calderini, Jean-Philippe Thivierge\",\"doi\":\"10.1186/s13408-021-00104-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Decoding approaches provide a useful means of estimating the information contained in neuronal circuits. In this work, we analyze the expected classification error of a decoder based on Fisher linear discriminant analysis. We provide expressions that relate decoding error to the specific parameters of a population model that performs linear integration of sensory input. Results show conditions that lead to beneficial and detrimental effects of noise correlation on decoding. Further, the proposed framework sheds light on the contribution of neuronal noise, highlighting cases where, counter-intuitively, increased noise may lead to improved decoding performance. Finally, we examined the impact of dynamical parameters, including neuronal leak and integration time constant, on decoding. Overall, this work presents a fruitful approach to the study of decoding using a comprehensive theoretical framework that merges dynamical parameters with estimates of readout error.</p>\",\"PeriodicalId\":54271,\"journal\":{\"name\":\"Journal of Mathematical Neuroscience\",\"volume\":\"11 1\",\"pages\":\"6\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2021-02-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7895896/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s13408-021-00104-4\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Neuroscience\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13408-021-00104-4","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Neuroscience","Score":null,"Total":0}
引用次数: 0

摘要

解码方法为估计神经元回路中包含的信息提供了一种有用的手段。在这项工作中,我们分析了基于费雪线性判别分析的解码器的预期分类误差。我们提供了将解码误差与对感觉输入进行线性整合的群体模型的特定参数联系起来的表达式。结果显示了噪声相关性对解码产生有利和不利影响的条件。此外,所提出的框架还揭示了神经元噪声的贡献,强调了在与直觉相反的情况下,噪声的增加可能会导致解码性能的提高。最后,我们研究了动态参数(包括神经元泄漏和整合时间常数)对解码的影响。总之,这项研究提出了一种富有成效的解码研究方法,它采用了一个综合的理论框架,将动态参数与读出误差估计相结合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Estimating Fisher discriminant error in a linear integrator model of neural population activity.

Estimating Fisher discriminant error in a linear integrator model of neural population activity.

Estimating Fisher discriminant error in a linear integrator model of neural population activity.

Estimating Fisher discriminant error in a linear integrator model of neural population activity.

Decoding approaches provide a useful means of estimating the information contained in neuronal circuits. In this work, we analyze the expected classification error of a decoder based on Fisher linear discriminant analysis. We provide expressions that relate decoding error to the specific parameters of a population model that performs linear integration of sensory input. Results show conditions that lead to beneficial and detrimental effects of noise correlation on decoding. Further, the proposed framework sheds light on the contribution of neuronal noise, highlighting cases where, counter-intuitively, increased noise may lead to improved decoding performance. Finally, we examined the impact of dynamical parameters, including neuronal leak and integration time constant, on decoding. Overall, this work presents a fruitful approach to the study of decoding using a comprehensive theoretical framework that merges dynamical parameters with estimates of readout error.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Mathematical Neuroscience
Journal of Mathematical Neuroscience Neuroscience-Neuroscience (miscellaneous)
自引率
0.00%
发文量
0
审稿时长
13 weeks
期刊介绍: The Journal of Mathematical Neuroscience (JMN) publishes research articles on the mathematical modeling and analysis of all areas of neuroscience, i.e., the study of the nervous system and its dysfunctions. The focus is on using mathematics as the primary tool for elucidating the fundamental mechanisms responsible for experimentally observed behaviours in neuroscience at all relevant scales, from the molecular world to that of cognition. The aim is to publish work that uses advanced mathematical techniques to illuminate these questions. It publishes full length original papers, rapid communications and review articles. Papers that combine theoretical results supported by convincing numerical experiments are especially encouraged. Papers that introduce and help develop those new pieces of mathematical theory which are likely to be relevant to future studies of the nervous system in general and the human brain in particular are also welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信