{"title":"氯胺酮和速效抗抑郁药的未来。","authors":"Lace M Riggs, Todd D Gould","doi":"10.1146/annurev-clinpsy-072120-014126","DOIUrl":null,"url":null,"abstract":"<p><p>The therapeutic onset of traditional antidepressants is delayed by several weeks and many depressed patients fail to respond to treatment altogether. In contrast, subanesthetic ketamine can rapidly alleviate symptoms of depression within hours of a single administration, even in patients who are considered treatment-resistant. Ketamine is thought to exert these effects by restoring the integrity of neural circuits that are compromised in depression. This hypothesis stems in part from preclinical observations that ketamine can strengthen synaptic connections by increasing glutamate-mediated neurotransmission and promoting rapid neurotrophic factor release. An improved understanding of how ketamine, and other novel rapid-acting antidepressants, give rise to these processes will help foster future therapeutic innovation. Here, we review the history of antidepressant treatment advances that preceded the ketamine discovery, critically examine mechanistic hypotheses for how ketamine may exert its antidepressant effects, and discuss the impact this knowledge has had on ongoing drug discovery efforts.</p>","PeriodicalId":17,"journal":{"name":"ACS Infectious Diseases","volume":null,"pages":null},"PeriodicalIF":4.0000,"publicationDate":"2021-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8170851/pdf/nihms-1707315.pdf","citationCount":"38","resultStr":"{\"title\":\"Ketamine and the Future of Rapid-Acting Antidepressants.\",\"authors\":\"Lace M Riggs, Todd D Gould\",\"doi\":\"10.1146/annurev-clinpsy-072120-014126\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The therapeutic onset of traditional antidepressants is delayed by several weeks and many depressed patients fail to respond to treatment altogether. In contrast, subanesthetic ketamine can rapidly alleviate symptoms of depression within hours of a single administration, even in patients who are considered treatment-resistant. Ketamine is thought to exert these effects by restoring the integrity of neural circuits that are compromised in depression. This hypothesis stems in part from preclinical observations that ketamine can strengthen synaptic connections by increasing glutamate-mediated neurotransmission and promoting rapid neurotrophic factor release. An improved understanding of how ketamine, and other novel rapid-acting antidepressants, give rise to these processes will help foster future therapeutic innovation. Here, we review the history of antidepressant treatment advances that preceded the ketamine discovery, critically examine mechanistic hypotheses for how ketamine may exert its antidepressant effects, and discuss the impact this knowledge has had on ongoing drug discovery efforts.</p>\",\"PeriodicalId\":17,\"journal\":{\"name\":\"ACS Infectious Diseases\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2021-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8170851/pdf/nihms-1707315.pdf\",\"citationCount\":\"38\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Infectious Diseases\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.1146/annurev-clinpsy-072120-014126\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/2/9 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Infectious Diseases","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1146/annurev-clinpsy-072120-014126","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/2/9 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
Ketamine and the Future of Rapid-Acting Antidepressants.
The therapeutic onset of traditional antidepressants is delayed by several weeks and many depressed patients fail to respond to treatment altogether. In contrast, subanesthetic ketamine can rapidly alleviate symptoms of depression within hours of a single administration, even in patients who are considered treatment-resistant. Ketamine is thought to exert these effects by restoring the integrity of neural circuits that are compromised in depression. This hypothesis stems in part from preclinical observations that ketamine can strengthen synaptic connections by increasing glutamate-mediated neurotransmission and promoting rapid neurotrophic factor release. An improved understanding of how ketamine, and other novel rapid-acting antidepressants, give rise to these processes will help foster future therapeutic innovation. Here, we review the history of antidepressant treatment advances that preceded the ketamine discovery, critically examine mechanistic hypotheses for how ketamine may exert its antidepressant effects, and discuss the impact this knowledge has had on ongoing drug discovery efforts.
期刊介绍:
ACS Infectious Diseases will be the first journal to highlight chemistry and its role in this multidisciplinary and collaborative research area. The journal will cover a diverse array of topics including, but not limited to:
* Discovery and development of new antimicrobial agents — identified through target- or phenotypic-based approaches as well as compounds that induce synergy with antimicrobials.
* Characterization and validation of drug target or pathways — use of single target and genome-wide knockdown and knockouts, biochemical studies, structural biology, new technologies to facilitate characterization and prioritization of potential drug targets.
* Mechanism of drug resistance — fundamental research that advances our understanding of resistance; strategies to prevent resistance.
* Mechanisms of action — use of genetic, metabolomic, and activity- and affinity-based protein profiling to elucidate the mechanism of action of clinical and experimental antimicrobial agents.
* Host-pathogen interactions — tools for studying host-pathogen interactions, cellular biochemistry of hosts and pathogens, and molecular interactions of pathogens with host microbiota.
* Small molecule vaccine adjuvants for infectious disease.
* Viral and bacterial biochemistry and molecular biology.