{"title":"小鼠主嗅球二尖瓣细胞的体内制备与鉴定","authors":"Thomas G. Mast, Edwin R. Griff","doi":"10.1016/j.brainresprot.2005.05.001","DOIUrl":null,"url":null,"abstract":"<div><p>The mouse main olfactory bulb<span> (MOB) is commonly used as a mammalian model to study olfactory processing. The genetic techniques available with the mouse make its MOB a powerful model for analysis of neuronal circuitry. The mouse has been used as a mammalian model for all types of MOB neurons, but especially to study the activity of mitral cells. However, mouse mitral cell activity is most commonly studied in vitro. Therefore, we aimed to develop a protocol to record the activity of antidromically identified mitral cells in mouse in vivo. Currently, such a protocol does not exist. Using extracellular techniques, we report a protocol that is able to record neurons from all mouse MOB layers. Specifically, mitral cell single-units were identified by antidromic activation from the posterior piriform cortex<span>, and their spontaneous activity was recorded for more than 30 min. This protocol is stable enough to record from single-units while buprenorphine was applied both topically to the surface of the MOB and injected systemically.</span></span></p></div>","PeriodicalId":79477,"journal":{"name":"Brain research. Brain research protocols","volume":"15 2","pages":"Pages 105-113"},"PeriodicalIF":0.0000,"publicationDate":"2005-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.brainresprot.2005.05.001","citationCount":"3","resultStr":"{\"title\":\"In vivo preparation and identification of mitral cells in the main olfactory bulb of the mouse\",\"authors\":\"Thomas G. Mast, Edwin R. Griff\",\"doi\":\"10.1016/j.brainresprot.2005.05.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The mouse main olfactory bulb<span> (MOB) is commonly used as a mammalian model to study olfactory processing. The genetic techniques available with the mouse make its MOB a powerful model for analysis of neuronal circuitry. The mouse has been used as a mammalian model for all types of MOB neurons, but especially to study the activity of mitral cells. However, mouse mitral cell activity is most commonly studied in vitro. Therefore, we aimed to develop a protocol to record the activity of antidromically identified mitral cells in mouse in vivo. Currently, such a protocol does not exist. Using extracellular techniques, we report a protocol that is able to record neurons from all mouse MOB layers. Specifically, mitral cell single-units were identified by antidromic activation from the posterior piriform cortex<span>, and their spontaneous activity was recorded for more than 30 min. This protocol is stable enough to record from single-units while buprenorphine was applied both topically to the surface of the MOB and injected systemically.</span></span></p></div>\",\"PeriodicalId\":79477,\"journal\":{\"name\":\"Brain research. Brain research protocols\",\"volume\":\"15 2\",\"pages\":\"Pages 105-113\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.brainresprot.2005.05.001\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brain research. Brain research protocols\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1385299X05000486\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain research. Brain research protocols","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1385299X05000486","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
In vivo preparation and identification of mitral cells in the main olfactory bulb of the mouse
The mouse main olfactory bulb (MOB) is commonly used as a mammalian model to study olfactory processing. The genetic techniques available with the mouse make its MOB a powerful model for analysis of neuronal circuitry. The mouse has been used as a mammalian model for all types of MOB neurons, but especially to study the activity of mitral cells. However, mouse mitral cell activity is most commonly studied in vitro. Therefore, we aimed to develop a protocol to record the activity of antidromically identified mitral cells in mouse in vivo. Currently, such a protocol does not exist. Using extracellular techniques, we report a protocol that is able to record neurons from all mouse MOB layers. Specifically, mitral cell single-units were identified by antidromic activation from the posterior piriform cortex, and their spontaneous activity was recorded for more than 30 min. This protocol is stable enough to record from single-units while buprenorphine was applied both topically to the surface of the MOB and injected systemically.