Antony D Karelis, François Péronnet, Phillip F Gardiner
{"title":"长时间间接原位刺激后大鼠足底肌纤维静息膜电位:葡萄糖输注的影响。","authors":"Antony D Karelis, François Péronnet, Phillip F Gardiner","doi":"10.1139/h05-108","DOIUrl":null,"url":null,"abstract":"<p><p>The purpose of this study was to determine whether glucose infusion during prolonged indirect muscle stimulation (50 Hz for 200 ms every 2.7 s at 5 V) would have an effect on resting membrane potential (RMP). The RMP measured at Min 1 in the recovery period following stimulation of the rat plantaris muscle for 60 min in situ was significantly decreased in control rats, but was back to baseline values within 2 min. When glucose was infused ([glucose] approximately 10 mM), no change was observed in RMP, and muscle fatigue and the reduction in M-wave peak-to-peak amplitude were both attenuated. However, muscle force and the electrical properties of the membrane were deteriorated both in rats infused with glucose and in control rats at Min 2 during the recovery period, at a time when RMP was not modified. These observations suggest that the effect of increased circulating glucose on fatigue-associated reductions in muscle fiber RMP seems to be modest and short-lived. Therefore, the attenuating effect of elevated glucose on muscle fatigue responses could be through mechanisms other than those associated with maintenance of RMP during fatigue.</p>","PeriodicalId":79394,"journal":{"name":"Canadian journal of applied physiology = Revue canadienne de physiologie appliquee","volume":"30 1","pages":"105-12"},"PeriodicalIF":0.0000,"publicationDate":"2005-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1139/h05-108","citationCount":"12","resultStr":"{\"title\":\"Resting membrane potential of rat plantaris muscle fibers after prolonged indirect stimulation in situ: effect of glucose infusion.\",\"authors\":\"Antony D Karelis, François Péronnet, Phillip F Gardiner\",\"doi\":\"10.1139/h05-108\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The purpose of this study was to determine whether glucose infusion during prolonged indirect muscle stimulation (50 Hz for 200 ms every 2.7 s at 5 V) would have an effect on resting membrane potential (RMP). The RMP measured at Min 1 in the recovery period following stimulation of the rat plantaris muscle for 60 min in situ was significantly decreased in control rats, but was back to baseline values within 2 min. When glucose was infused ([glucose] approximately 10 mM), no change was observed in RMP, and muscle fatigue and the reduction in M-wave peak-to-peak amplitude were both attenuated. However, muscle force and the electrical properties of the membrane were deteriorated both in rats infused with glucose and in control rats at Min 2 during the recovery period, at a time when RMP was not modified. These observations suggest that the effect of increased circulating glucose on fatigue-associated reductions in muscle fiber RMP seems to be modest and short-lived. Therefore, the attenuating effect of elevated glucose on muscle fatigue responses could be through mechanisms other than those associated with maintenance of RMP during fatigue.</p>\",\"PeriodicalId\":79394,\"journal\":{\"name\":\"Canadian journal of applied physiology = Revue canadienne de physiologie appliquee\",\"volume\":\"30 1\",\"pages\":\"105-12\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1139/h05-108\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Canadian journal of applied physiology = Revue canadienne de physiologie appliquee\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1139/h05-108\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian journal of applied physiology = Revue canadienne de physiologie appliquee","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1139/h05-108","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Resting membrane potential of rat plantaris muscle fibers after prolonged indirect stimulation in situ: effect of glucose infusion.
The purpose of this study was to determine whether glucose infusion during prolonged indirect muscle stimulation (50 Hz for 200 ms every 2.7 s at 5 V) would have an effect on resting membrane potential (RMP). The RMP measured at Min 1 in the recovery period following stimulation of the rat plantaris muscle for 60 min in situ was significantly decreased in control rats, but was back to baseline values within 2 min. When glucose was infused ([glucose] approximately 10 mM), no change was observed in RMP, and muscle fatigue and the reduction in M-wave peak-to-peak amplitude were both attenuated. However, muscle force and the electrical properties of the membrane were deteriorated both in rats infused with glucose and in control rats at Min 2 during the recovery period, at a time when RMP was not modified. These observations suggest that the effect of increased circulating glucose on fatigue-associated reductions in muscle fiber RMP seems to be modest and short-lived. Therefore, the attenuating effect of elevated glucose on muscle fatigue responses could be through mechanisms other than those associated with maintenance of RMP during fatigue.