Gaële Ducher, Christelle Jaffré, Alexandre Arlettaz, Claude-Laurent Benhamou, Daniel Courteix
{"title":"长期打网球对优势和非优势前臂肌肉-骨骼关系的影响。","authors":"Gaële Ducher, Christelle Jaffré, Alexandre Arlettaz, Claude-Laurent Benhamou, Daniel Courteix","doi":"10.1139/h05-101","DOIUrl":null,"url":null,"abstract":"<p><p>The relationship between muscle strength and bone mineral density illustrates the positive effect of mechanical loading on bone. But local and systemic factors may affect both muscle and bone tissues. This study investigated the effects of long-term tennis playing on the relationship between lean tissue mass and bone mineral content in the forearms, taking the body dimensions into account. Fifty-two tennis players (age 24.2 +/- 5.8 yrs, 16.2 +/- 6.1 yrs of practice) were recruited. Lean tissue mass (LTM), bone area, bone mineral content (BMC), and bone mineral density were measured at the forearms from a DXA whole-body scan. Grip strength was assessed with a dynamometer. A marked side-to-side difference (p < 0.0001) was found in favor of the dominant forearm in all parameters. Bone area and BMC correlated with grip strength on both sides (r = 0.81-0.84, p < 0.0001). The correlations were still significant after adjusting for whole-body BMC, body height, or forearm length. This result reinforced the putative role of the muscles in the mechanical loading on bones. In addition, forearm BMC adjusted to LTM or grip strength was higher on the dominant side, suggesting that tennis playing exerts a direct effect on bone.</p>","PeriodicalId":79394,"journal":{"name":"Canadian journal of applied physiology = Revue canadienne de physiologie appliquee","volume":"30 1","pages":"3-17"},"PeriodicalIF":0.0000,"publicationDate":"2005-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1139/h05-101","citationCount":"80","resultStr":"{\"title\":\"Effects of long-term tennis playing on the muscle-bone relationship in the dominant and nondominant forearms.\",\"authors\":\"Gaële Ducher, Christelle Jaffré, Alexandre Arlettaz, Claude-Laurent Benhamou, Daniel Courteix\",\"doi\":\"10.1139/h05-101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The relationship between muscle strength and bone mineral density illustrates the positive effect of mechanical loading on bone. But local and systemic factors may affect both muscle and bone tissues. This study investigated the effects of long-term tennis playing on the relationship between lean tissue mass and bone mineral content in the forearms, taking the body dimensions into account. Fifty-two tennis players (age 24.2 +/- 5.8 yrs, 16.2 +/- 6.1 yrs of practice) were recruited. Lean tissue mass (LTM), bone area, bone mineral content (BMC), and bone mineral density were measured at the forearms from a DXA whole-body scan. Grip strength was assessed with a dynamometer. A marked side-to-side difference (p < 0.0001) was found in favor of the dominant forearm in all parameters. Bone area and BMC correlated with grip strength on both sides (r = 0.81-0.84, p < 0.0001). The correlations were still significant after adjusting for whole-body BMC, body height, or forearm length. This result reinforced the putative role of the muscles in the mechanical loading on bones. In addition, forearm BMC adjusted to LTM or grip strength was higher on the dominant side, suggesting that tennis playing exerts a direct effect on bone.</p>\",\"PeriodicalId\":79394,\"journal\":{\"name\":\"Canadian journal of applied physiology = Revue canadienne de physiologie appliquee\",\"volume\":\"30 1\",\"pages\":\"3-17\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1139/h05-101\",\"citationCount\":\"80\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Canadian journal of applied physiology = Revue canadienne de physiologie appliquee\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1139/h05-101\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian journal of applied physiology = Revue canadienne de physiologie appliquee","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1139/h05-101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Effects of long-term tennis playing on the muscle-bone relationship in the dominant and nondominant forearms.
The relationship between muscle strength and bone mineral density illustrates the positive effect of mechanical loading on bone. But local and systemic factors may affect both muscle and bone tissues. This study investigated the effects of long-term tennis playing on the relationship between lean tissue mass and bone mineral content in the forearms, taking the body dimensions into account. Fifty-two tennis players (age 24.2 +/- 5.8 yrs, 16.2 +/- 6.1 yrs of practice) were recruited. Lean tissue mass (LTM), bone area, bone mineral content (BMC), and bone mineral density were measured at the forearms from a DXA whole-body scan. Grip strength was assessed with a dynamometer. A marked side-to-side difference (p < 0.0001) was found in favor of the dominant forearm in all parameters. Bone area and BMC correlated with grip strength on both sides (r = 0.81-0.84, p < 0.0001). The correlations were still significant after adjusting for whole-body BMC, body height, or forearm length. This result reinforced the putative role of the muscles in the mechanical loading on bones. In addition, forearm BMC adjusted to LTM or grip strength was higher on the dominant side, suggesting that tennis playing exerts a direct effect on bone.