Maureen J Charron, Naira Gorovits, J Skye Laidlaw, Mollie Ranalletta, Ellen B Katz
{"title":"利用GLUT-4缺失小鼠研究骨骼肌葡萄糖摄取。","authors":"Maureen J Charron, Naira Gorovits, J Skye Laidlaw, Mollie Ranalletta, Ellen B Katz","doi":"10.1111/j.1440-1681.2005.04189.x","DOIUrl":null,"url":null,"abstract":"<p><p>1. The present review focuses on the effects of varying levels of GLUT-4, the insulin-sensitive glucose transporter, on insulin sensitivity and whole body glucose homeostasis. 2. Three mouse models are discussed including myosin light chain (MLC)-GLUT-4 mice which overexpress GLUT-4 specifically in skeletal muscle, GLUT-4 null mice which express no GLUT-4 and the MLC-GLUT-4 null mice which express GLUT-4 only in skeletal muscle. Overexpressing GLUT-4 specifically in the skeletal muscle results in increased insulin sensitivity in the MLC-GLUT-4 mice. In contrast, the GLUT-4 null mice exhibit insulin intolerance accompanied by abnormalities in glucose and lipid metabolism. Restoring GLUT-4 expression in skeletal muscle in the MLC-GLUT-4 null mice results in normal glucose metabolism but continued abnormal lipid metabolism. 3. The results of experiments using these mouse models demonstrates that modifying the expression of GLUT-4 profoundly affects whole body insulin action and consequently glucose and lipid metabolism.</p>","PeriodicalId":10259,"journal":{"name":"Clinical and Experimental Pharmacology and Physiology","volume":"32 4","pages":"308-13"},"PeriodicalIF":2.4000,"publicationDate":"2005-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1111/j.1440-1681.2005.04189.x","citationCount":"17","resultStr":"{\"title\":\"Use of GLUT-4 null mice to study skeletal muscle glucose uptake.\",\"authors\":\"Maureen J Charron, Naira Gorovits, J Skye Laidlaw, Mollie Ranalletta, Ellen B Katz\",\"doi\":\"10.1111/j.1440-1681.2005.04189.x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>1. The present review focuses on the effects of varying levels of GLUT-4, the insulin-sensitive glucose transporter, on insulin sensitivity and whole body glucose homeostasis. 2. Three mouse models are discussed including myosin light chain (MLC)-GLUT-4 mice which overexpress GLUT-4 specifically in skeletal muscle, GLUT-4 null mice which express no GLUT-4 and the MLC-GLUT-4 null mice which express GLUT-4 only in skeletal muscle. Overexpressing GLUT-4 specifically in the skeletal muscle results in increased insulin sensitivity in the MLC-GLUT-4 mice. In contrast, the GLUT-4 null mice exhibit insulin intolerance accompanied by abnormalities in glucose and lipid metabolism. Restoring GLUT-4 expression in skeletal muscle in the MLC-GLUT-4 null mice results in normal glucose metabolism but continued abnormal lipid metabolism. 3. The results of experiments using these mouse models demonstrates that modifying the expression of GLUT-4 profoundly affects whole body insulin action and consequently glucose and lipid metabolism.</p>\",\"PeriodicalId\":10259,\"journal\":{\"name\":\"Clinical and Experimental Pharmacology and Physiology\",\"volume\":\"32 4\",\"pages\":\"308-13\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2005-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1111/j.1440-1681.2005.04189.x\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Clinical and Experimental Pharmacology and Physiology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1111/j.1440-1681.2005.04189.x\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical and Experimental Pharmacology and Physiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1111/j.1440-1681.2005.04189.x","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Use of GLUT-4 null mice to study skeletal muscle glucose uptake.
1. The present review focuses on the effects of varying levels of GLUT-4, the insulin-sensitive glucose transporter, on insulin sensitivity and whole body glucose homeostasis. 2. Three mouse models are discussed including myosin light chain (MLC)-GLUT-4 mice which overexpress GLUT-4 specifically in skeletal muscle, GLUT-4 null mice which express no GLUT-4 and the MLC-GLUT-4 null mice which express GLUT-4 only in skeletal muscle. Overexpressing GLUT-4 specifically in the skeletal muscle results in increased insulin sensitivity in the MLC-GLUT-4 mice. In contrast, the GLUT-4 null mice exhibit insulin intolerance accompanied by abnormalities in glucose and lipid metabolism. Restoring GLUT-4 expression in skeletal muscle in the MLC-GLUT-4 null mice results in normal glucose metabolism but continued abnormal lipid metabolism. 3. The results of experiments using these mouse models demonstrates that modifying the expression of GLUT-4 profoundly affects whole body insulin action and consequently glucose and lipid metabolism.
期刊介绍:
Clinical and Experimental Pharmacology and Physiology is an international journal founded in 1974 by Mike Rand, Austin Doyle, John Coghlan and Paul Korner. Our focus is new frontiers in physiology and pharmacology, emphasizing the translation of basic research to clinical practice. We publish original articles, invited reviews and our exciting, cutting-edge Frontiers-in-Research series’.