Alexandra Bristiel, Manon Cadinot, Mathieu Pizzonero, Frédéric Taran, Dominique Urban, Raphaël Guignard and Dominique Guianvarc’h*,
{"title":"用生物正交环丙烯或sydone作为化学合成寡核苷酸无铜后功能化的构建块的2 ' -修饰胸腺嘧啶","authors":"Alexandra Bristiel, Manon Cadinot, Mathieu Pizzonero, Frédéric Taran, Dominique Urban, Raphaël Guignard and Dominique Guianvarc’h*, ","doi":"10.1021/acs.bioconjchem.3c00284","DOIUrl":null,"url":null,"abstract":"<p >The development of facile methods for conjugating relevant probes, ligands, or delivery agents onto oligonucleotides (ONs) is highly desirable both for fundamental studies in chemical biology and for improving the pharmacology of ONs in medicinal chemistry. Numerous efforts have been focused on the introduction of bioorthogonal groups onto phosphoramidite building blocks, allowing the controlled chemical synthesis of reactive ONs for postsynthetic modifications. Among these building blocks, alkyne, cyclooctynes, <i>trans</i>-cyclooctene, and norbornene have been proved to be compatible with automated solid-phase chemistry. Herein, we present the development of novel 2′-functionalized nucleoside phosphoramidite monomers comprising bioorthogonal methylcyclopropene or sydnone moieties and their introduction for the first time to ON solid-phase synthesis. Traceless ON postsynthetic modifications with reactive complementary probes were successfully achieved through either inverse electron-demand Diels–Alder (iEDDA) reactions or strain-promoted sydnone–alkyne cycloaddition (SPSAC). These results expand the set of bioorthogonal phosphoramidite building blocks to generate ONs for postsynthetic labeling.</p>","PeriodicalId":29,"journal":{"name":"Bioconjugate Chemistry","volume":"34 9","pages":"1613–1621"},"PeriodicalIF":3.9000,"publicationDate":"2023-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"2′-Modified Thymidines with Bioorthogonal Cyclopropene or Sydnone as Building Blocks for Copper-Free Postsynthetic Functionalization of Chemically Synthesized Oligonucleotides\",\"authors\":\"Alexandra Bristiel, Manon Cadinot, Mathieu Pizzonero, Frédéric Taran, Dominique Urban, Raphaël Guignard and Dominique Guianvarc’h*, \",\"doi\":\"10.1021/acs.bioconjchem.3c00284\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The development of facile methods for conjugating relevant probes, ligands, or delivery agents onto oligonucleotides (ONs) is highly desirable both for fundamental studies in chemical biology and for improving the pharmacology of ONs in medicinal chemistry. Numerous efforts have been focused on the introduction of bioorthogonal groups onto phosphoramidite building blocks, allowing the controlled chemical synthesis of reactive ONs for postsynthetic modifications. Among these building blocks, alkyne, cyclooctynes, <i>trans</i>-cyclooctene, and norbornene have been proved to be compatible with automated solid-phase chemistry. Herein, we present the development of novel 2′-functionalized nucleoside phosphoramidite monomers comprising bioorthogonal methylcyclopropene or sydnone moieties and their introduction for the first time to ON solid-phase synthesis. Traceless ON postsynthetic modifications with reactive complementary probes were successfully achieved through either inverse electron-demand Diels–Alder (iEDDA) reactions or strain-promoted sydnone–alkyne cycloaddition (SPSAC). These results expand the set of bioorthogonal phosphoramidite building blocks to generate ONs for postsynthetic labeling.</p>\",\"PeriodicalId\":29,\"journal\":{\"name\":\"Bioconjugate Chemistry\",\"volume\":\"34 9\",\"pages\":\"1613–1621\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2023-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioconjugate Chemistry\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.bioconjchem.3c00284\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioconjugate Chemistry","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.bioconjchem.3c00284","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
2′-Modified Thymidines with Bioorthogonal Cyclopropene or Sydnone as Building Blocks for Copper-Free Postsynthetic Functionalization of Chemically Synthesized Oligonucleotides
The development of facile methods for conjugating relevant probes, ligands, or delivery agents onto oligonucleotides (ONs) is highly desirable both for fundamental studies in chemical biology and for improving the pharmacology of ONs in medicinal chemistry. Numerous efforts have been focused on the introduction of bioorthogonal groups onto phosphoramidite building blocks, allowing the controlled chemical synthesis of reactive ONs for postsynthetic modifications. Among these building blocks, alkyne, cyclooctynes, trans-cyclooctene, and norbornene have been proved to be compatible with automated solid-phase chemistry. Herein, we present the development of novel 2′-functionalized nucleoside phosphoramidite monomers comprising bioorthogonal methylcyclopropene or sydnone moieties and their introduction for the first time to ON solid-phase synthesis. Traceless ON postsynthetic modifications with reactive complementary probes were successfully achieved through either inverse electron-demand Diels–Alder (iEDDA) reactions or strain-promoted sydnone–alkyne cycloaddition (SPSAC). These results expand the set of bioorthogonal phosphoramidite building blocks to generate ONs for postsynthetic labeling.
期刊介绍:
Bioconjugate Chemistry invites original contributions on all research at the interface between man-made and biological materials. The mission of the journal is to communicate to advances in fields including therapeutic delivery, imaging, bionanotechnology, and synthetic biology. Bioconjugate Chemistry is intended to provide a forum for presentation of research relevant to all aspects of bioconjugates, including the preparation, properties and applications of biomolecular conjugates.