coh - matrix:语篇衔接与语言分析。

Arthur C Graesser, Danielle S McNamara, Max M Louwerse, Zhiqiang Cai
{"title":"coh - matrix:语篇衔接与语言分析。","authors":"Arthur C Graesser,&nbsp;Danielle S McNamara,&nbsp;Max M Louwerse,&nbsp;Zhiqiang Cai","doi":"10.3758/bf03195564","DOIUrl":null,"url":null,"abstract":"<p><p>Advances in computational linguistics and discourse processing have made it possible to automate many language- and text-processing mechanisms. We have developed a computer tool called Coh-Metrix, which analyzes texts on over 200 measures of cohesion, language, and readability. Its modules use lexicons, part-of-speech classifiers, syntactic parsers, templates, corpora, latent semantic analysis, and other components that are widely used in computational linguistics. After the user enters an English text, CohMetrix returns measures requested by the user. In addition, a facility allows the user to store the results of these analyses in data files (such as Text, Excel, and SPSS). Standard text readability formulas scale texts on difficulty by relying on word length and sentence length, whereas Coh-Metrix is sensitive to cohesion relations, world knowledge, and language and discourse characteristics.</p>","PeriodicalId":79800,"journal":{"name":"Behavior research methods, instruments, & computers : a journal of the Psychonomic Society, Inc","volume":"36 2","pages":"193-202"},"PeriodicalIF":0.0000,"publicationDate":"2004-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3758/bf03195564","citationCount":"1314","resultStr":"{\"title\":\"Coh-metrix: analysis of text on cohesion and language.\",\"authors\":\"Arthur C Graesser,&nbsp;Danielle S McNamara,&nbsp;Max M Louwerse,&nbsp;Zhiqiang Cai\",\"doi\":\"10.3758/bf03195564\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Advances in computational linguistics and discourse processing have made it possible to automate many language- and text-processing mechanisms. We have developed a computer tool called Coh-Metrix, which analyzes texts on over 200 measures of cohesion, language, and readability. Its modules use lexicons, part-of-speech classifiers, syntactic parsers, templates, corpora, latent semantic analysis, and other components that are widely used in computational linguistics. After the user enters an English text, CohMetrix returns measures requested by the user. In addition, a facility allows the user to store the results of these analyses in data files (such as Text, Excel, and SPSS). Standard text readability formulas scale texts on difficulty by relying on word length and sentence length, whereas Coh-Metrix is sensitive to cohesion relations, world knowledge, and language and discourse characteristics.</p>\",\"PeriodicalId\":79800,\"journal\":{\"name\":\"Behavior research methods, instruments, & computers : a journal of the Psychonomic Society, Inc\",\"volume\":\"36 2\",\"pages\":\"193-202\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.3758/bf03195564\",\"citationCount\":\"1314\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Behavior research methods, instruments, & computers : a journal of the Psychonomic Society, Inc\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3758/bf03195564\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Behavior research methods, instruments, & computers : a journal of the Psychonomic Society, Inc","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3758/bf03195564","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1314

摘要

计算语言学和话语处理的进步使得许多语言和文本处理机制的自动化成为可能。我们开发了一种名为“Coh-Metrix”的计算机工具,它可以分析文本的衔接、语言和可读性等200多项指标。它的模块使用了词汇、词性分类器、句法解析器、模板、语料库、潜在语义分析和其他在计算语言学中广泛使用的组件。用户输入英文文本后,CohMetrix返回用户请求的度量。此外,一个工具允许用户将这些分析的结果存储在数据文件中(如Text、Excel和SPSS)。标准的文本可读性公式通过单词长度和句子长度来衡量文本的难度,而Coh-Metrix则对衔接关系、世界知识以及语言和话语特征敏感。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Coh-metrix: analysis of text on cohesion and language.

Advances in computational linguistics and discourse processing have made it possible to automate many language- and text-processing mechanisms. We have developed a computer tool called Coh-Metrix, which analyzes texts on over 200 measures of cohesion, language, and readability. Its modules use lexicons, part-of-speech classifiers, syntactic parsers, templates, corpora, latent semantic analysis, and other components that are widely used in computational linguistics. After the user enters an English text, CohMetrix returns measures requested by the user. In addition, a facility allows the user to store the results of these analyses in data files (such as Text, Excel, and SPSS). Standard text readability formulas scale texts on difficulty by relying on word length and sentence length, whereas Coh-Metrix is sensitive to cohesion relations, world knowledge, and language and discourse characteristics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信