力维持与次最大疲劳收缩。

David G Behm
{"title":"力维持与次最大疲劳收缩。","authors":"David G Behm","doi":"10.1139/h04-019","DOIUrl":null,"url":null,"abstract":"<p><p>Whereas many definitions of fatigue include externally measurable decrements in force or performance, fatigue can be present with no change in the external output of the muscle. The maintenance of submaximal forces can be considered a compromise between neuromuscular force enhancement and competing inhibitory influences. An example of a muscle facilitatory process includes postactivation potentiation that results in an increased sensitivity to Ca++. The neuromuscular system copes with metabolic disruption and subsequent loss of force by recruiting additional motor units and increasing the firing frequency. If the contraction persists, firing frequency may decrease so as to optimize the stimulus rate with the prolonged duration of the muscle fibre action potential (muscle wisdom). The insertion of additional neural impulses into the train of stimuli can result in force potentiation (catch-like properties). Furthermore, there is evidence of neural potentiation and a dissociation of muscle activity with submaximal fatigue. Conversely, inhibition may be derived supraspinally or at the spinal level. While there may be some evidence of intrinsic motoneuronal fatigue, inhibitory afferent influences from chemical, tensile, pressure, and other factors play an important role in the competing influences on force output.</p>","PeriodicalId":79394,"journal":{"name":"Canadian journal of applied physiology = Revue canadienne de physiologie appliquee","volume":"29 3","pages":"274-90"},"PeriodicalIF":0.0000,"publicationDate":"2004-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1139/h04-019","citationCount":"94","resultStr":"{\"title\":\"Force maintenance with submaximal fatiguing contractions.\",\"authors\":\"David G Behm\",\"doi\":\"10.1139/h04-019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Whereas many definitions of fatigue include externally measurable decrements in force or performance, fatigue can be present with no change in the external output of the muscle. The maintenance of submaximal forces can be considered a compromise between neuromuscular force enhancement and competing inhibitory influences. An example of a muscle facilitatory process includes postactivation potentiation that results in an increased sensitivity to Ca++. The neuromuscular system copes with metabolic disruption and subsequent loss of force by recruiting additional motor units and increasing the firing frequency. If the contraction persists, firing frequency may decrease so as to optimize the stimulus rate with the prolonged duration of the muscle fibre action potential (muscle wisdom). The insertion of additional neural impulses into the train of stimuli can result in force potentiation (catch-like properties). Furthermore, there is evidence of neural potentiation and a dissociation of muscle activity with submaximal fatigue. Conversely, inhibition may be derived supraspinally or at the spinal level. While there may be some evidence of intrinsic motoneuronal fatigue, inhibitory afferent influences from chemical, tensile, pressure, and other factors play an important role in the competing influences on force output.</p>\",\"PeriodicalId\":79394,\"journal\":{\"name\":\"Canadian journal of applied physiology = Revue canadienne de physiologie appliquee\",\"volume\":\"29 3\",\"pages\":\"274-90\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1139/h04-019\",\"citationCount\":\"94\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Canadian journal of applied physiology = Revue canadienne de physiologie appliquee\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1139/h04-019\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian journal of applied physiology = Revue canadienne de physiologie appliquee","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1139/h04-019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 94

摘要

虽然疲劳的许多定义包括外部可测量的力量或性能的下降,但疲劳可以在肌肉的外部输出没有变化的情况下出现。维持次最大的力量可以被认为是神经肌肉力量增强和竞争性抑制影响之间的妥协。肌肉促进过程的一个例子包括导致对ca++敏感性增加的激活后增强。神经肌肉系统通过招募额外的运动单位和增加放电频率来应对代谢中断和随后的力量损失。如果持续收缩,放电频率可能会降低,从而随着肌纤维动作电位(肌肉智慧)持续时间的延长而优化刺激率。在刺激序列中插入额外的神经脉冲会导致力增强(类似于捕获的特性)。此外,有证据表明神经增强和肌肉活动与亚极限疲劳分离。相反,抑制作用可能来自于脊柱水平或脊柱水平。虽然可能有一些内在运动神经疲劳的证据,但化学、张力、压力和其他因素的抑制性传入影响在对力输出的竞争影响中起着重要作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Force maintenance with submaximal fatiguing contractions.

Whereas many definitions of fatigue include externally measurable decrements in force or performance, fatigue can be present with no change in the external output of the muscle. The maintenance of submaximal forces can be considered a compromise between neuromuscular force enhancement and competing inhibitory influences. An example of a muscle facilitatory process includes postactivation potentiation that results in an increased sensitivity to Ca++. The neuromuscular system copes with metabolic disruption and subsequent loss of force by recruiting additional motor units and increasing the firing frequency. If the contraction persists, firing frequency may decrease so as to optimize the stimulus rate with the prolonged duration of the muscle fibre action potential (muscle wisdom). The insertion of additional neural impulses into the train of stimuli can result in force potentiation (catch-like properties). Furthermore, there is evidence of neural potentiation and a dissociation of muscle activity with submaximal fatigue. Conversely, inhibition may be derived supraspinally or at the spinal level. While there may be some evidence of intrinsic motoneuronal fatigue, inhibitory afferent influences from chemical, tensile, pressure, and other factors play an important role in the competing influences on force output.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信