用逻辑回归估计延迟折现函数。

E Paul Wileyto, Janet Audrain-McGovern, Leonard H Epstein, Caryn Lerman
{"title":"用逻辑回归估计延迟折现函数。","authors":"E Paul Wileyto,&nbsp;Janet Audrain-McGovern,&nbsp;Leonard H Epstein,&nbsp;Caryn Lerman","doi":"10.3758/bf03195548","DOIUrl":null,"url":null,"abstract":"<p><p>The monetary choice questionnaire (MCQ) and similar computer tasks ask preference questions in order to ascertain indifference, the perceived equivalence of immediate versus larger delayed rewards. Indifference data are then fitted with a hyperbolic function, summarizing the decline in perceived value with delay time. We present a fitting method that estimates the hyperbolic parameter k directly from survey responses. Binary preferences are modeled as a function of time (X2) and a transformed reward ratio (X1), yielding logistic regression coefficients beta 2 and beta 1. The hyperbolic parameter emerges as k = beta 2/beta 1, where the logistic predicted p = .5 (the definition of indifference). The MCQ was administered to 1,073 adolescents and was scored using both standard and logistic methods. The means for In(k) were similar (standard, -4.53; logistic, -4.51), and the results were highly correlated (rho = .973). Simulated MCQ data showed that k was unbiased, except where beta 1 > or = -1, indicating a vague survey response. Jackknife standard errors provided excellent coverage.</p>","PeriodicalId":79800,"journal":{"name":"Behavior research methods, instruments, & computers : a journal of the Psychonomic Society, Inc","volume":"36 1","pages":"41-51"},"PeriodicalIF":0.0000,"publicationDate":"2004-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3758/bf03195548","citationCount":"55","resultStr":"{\"title\":\"Using logistic regression to estimate delay-discounting functions.\",\"authors\":\"E Paul Wileyto,&nbsp;Janet Audrain-McGovern,&nbsp;Leonard H Epstein,&nbsp;Caryn Lerman\",\"doi\":\"10.3758/bf03195548\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The monetary choice questionnaire (MCQ) and similar computer tasks ask preference questions in order to ascertain indifference, the perceived equivalence of immediate versus larger delayed rewards. Indifference data are then fitted with a hyperbolic function, summarizing the decline in perceived value with delay time. We present a fitting method that estimates the hyperbolic parameter k directly from survey responses. Binary preferences are modeled as a function of time (X2) and a transformed reward ratio (X1), yielding logistic regression coefficients beta 2 and beta 1. The hyperbolic parameter emerges as k = beta 2/beta 1, where the logistic predicted p = .5 (the definition of indifference). The MCQ was administered to 1,073 adolescents and was scored using both standard and logistic methods. The means for In(k) were similar (standard, -4.53; logistic, -4.51), and the results were highly correlated (rho = .973). Simulated MCQ data showed that k was unbiased, except where beta 1 > or = -1, indicating a vague survey response. Jackknife standard errors provided excellent coverage.</p>\",\"PeriodicalId\":79800,\"journal\":{\"name\":\"Behavior research methods, instruments, & computers : a journal of the Psychonomic Society, Inc\",\"volume\":\"36 1\",\"pages\":\"41-51\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.3758/bf03195548\",\"citationCount\":\"55\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Behavior research methods, instruments, & computers : a journal of the Psychonomic Society, Inc\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3758/bf03195548\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Behavior research methods, instruments, & computers : a journal of the Psychonomic Society, Inc","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3758/bf03195548","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 55

摘要

货币选择问卷(MCQ)和类似的计算机任务提出偏好问题,以确定冷漠,即即时奖励与较大延迟奖励的感知等效性。然后用双曲函数拟合无差异数据,总结感知价值随延迟时间的下降。我们提出了一种拟合方法,可以直接从调查结果中估计双曲参数k。二元偏好被建模为时间(X2)和转换后的奖励比率(X1)的函数,产生逻辑回归系数贝塔2和贝塔1。双曲参数出现为k = β 2/ β 1,其中逻辑预测p = 0.5(无差异的定义)。对1073名青少年进行了MCQ测试,并使用标准和逻辑方法进行评分。In(k)的平均值相似(标准,-4.53;Logistic, -4.51),结果高度相关(rho = .973)。模拟MCQ数据显示,k是无偏的,除了β 1 >或= -1,表明调查反应模糊。折刀标准错误提供了很好的覆盖率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Using logistic regression to estimate delay-discounting functions.

The monetary choice questionnaire (MCQ) and similar computer tasks ask preference questions in order to ascertain indifference, the perceived equivalence of immediate versus larger delayed rewards. Indifference data are then fitted with a hyperbolic function, summarizing the decline in perceived value with delay time. We present a fitting method that estimates the hyperbolic parameter k directly from survey responses. Binary preferences are modeled as a function of time (X2) and a transformed reward ratio (X1), yielding logistic regression coefficients beta 2 and beta 1. The hyperbolic parameter emerges as k = beta 2/beta 1, where the logistic predicted p = .5 (the definition of indifference). The MCQ was administered to 1,073 adolescents and was scored using both standard and logistic methods. The means for In(k) were similar (standard, -4.53; logistic, -4.51), and the results were highly correlated (rho = .973). Simulated MCQ data showed that k was unbiased, except where beta 1 > or = -1, indicating a vague survey response. Jackknife standard errors provided excellent coverage.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信