{"title":"用共聚焦显微镜测定体外脑干神经元膜电位和电场","authors":"J Ma, F.Z Cui","doi":"10.1016/j.brainresprot.2004.02.002","DOIUrl":null,"url":null,"abstract":"<div><p>A method of measuring transmembrane potential and electric field of neural cells cultured in vitro is described in this paper. The high resolution and scanning speed of the method make it considerable to be used to observe the viability of the neurons cultured on opaque substrate. Rhodamine 123 was used to stain the cells in order to display different intensity corresponding to transmembrane potential. The fluorescence data were collected by confocal laser scanning microscopy (CLSM). Then the data were processed to create the graphs of transmembrane potential and electric field. This is the first paper describes a reliable method for three-dimensional visualization of potential voltage of neurons at the best of our knowledge.</p></div>","PeriodicalId":79477,"journal":{"name":"Brain research. Brain research protocols","volume":"13 2","pages":"Pages 84-90"},"PeriodicalIF":0.0000,"publicationDate":"2004-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.brainresprot.2004.02.002","citationCount":"2","resultStr":"{\"title\":\"Measuring membrane potential and electric field of brainstem neurons in vitro by confocal microscopy\",\"authors\":\"J Ma, F.Z Cui\",\"doi\":\"10.1016/j.brainresprot.2004.02.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A method of measuring transmembrane potential and electric field of neural cells cultured in vitro is described in this paper. The high resolution and scanning speed of the method make it considerable to be used to observe the viability of the neurons cultured on opaque substrate. Rhodamine 123 was used to stain the cells in order to display different intensity corresponding to transmembrane potential. The fluorescence data were collected by confocal laser scanning microscopy (CLSM). Then the data were processed to create the graphs of transmembrane potential and electric field. This is the first paper describes a reliable method for three-dimensional visualization of potential voltage of neurons at the best of our knowledge.</p></div>\",\"PeriodicalId\":79477,\"journal\":{\"name\":\"Brain research. Brain research protocols\",\"volume\":\"13 2\",\"pages\":\"Pages 84-90\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.brainresprot.2004.02.002\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brain research. Brain research protocols\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1385299X04000212\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain research. Brain research protocols","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1385299X04000212","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Measuring membrane potential and electric field of brainstem neurons in vitro by confocal microscopy
A method of measuring transmembrane potential and electric field of neural cells cultured in vitro is described in this paper. The high resolution and scanning speed of the method make it considerable to be used to observe the viability of the neurons cultured on opaque substrate. Rhodamine 123 was used to stain the cells in order to display different intensity corresponding to transmembrane potential. The fluorescence data were collected by confocal laser scanning microscopy (CLSM). Then the data were processed to create the graphs of transmembrane potential and electric field. This is the first paper describes a reliable method for three-dimensional visualization of potential voltage of neurons at the best of our knowledge.