{"title":"一种新型水溶性维生素E衍生物可预防细菌内毒素引起的急性肺损伤。","authors":"Kazuhiko Uchiyama, Hirohisa Takano, Rie Yanagisawa, Ken-ichiro Inoue, Yuji Naito, Norimasa Yoshida, Shin Yoshino, Hironobu Murase, Takamichi Ichinose, Toshikazu Yoshikawa","doi":"10.1111/j.1440-1681.2004.03981.x","DOIUrl":null,"url":null,"abstract":"<p><p>1. Various chemokines, such as keratinocyte chemoattractant (KC), macrophage inflammatory protein (MIP)-1alpha and macrophage chemoattractant protein (MCP)-1, are involved in the pathogenesis of acute lung injury induced by bacterial endotoxin (lipopolysaccharide; LPS). Oxidative stress is an important regulator of the expression of these chemokines, whereas vitamin E protects against LPS-induced insults. In the present study, we determined the effects of 2-(alpha-D-glucopyranosyl) methyl-2,5,7,8-tetramethylchroman-6-ol (TMG), a novel water-soluble vitamin E derivative with excellent anti-oxidant activity, on acute lung injury induced by intratracheal instillation of LPS (125 micro g/kg) in mice. 2. When TMG was administered intratracheally and intravenously (0.1, 1.0 or 10 mg/kg), it dose-dependently decreased the infiltration of neutrophils into bronchoalveolar lavage fluid after LPS challenge. 3. Histological examination showed that treatment with TMG ameliorated the LPS-induced infiltration of neutrophils into the lungs. Furthermore, TMG attenuated the LPS-induced increase in pulmonary expression of KC, MIP-1alpha and MCP-1 at both the transcriptional and translational levels. 4. These results indicate that TMG is a possible treatment for acute lung injury, especially that caused by Gram-negative bacteria. The therapeutic effect of TMG may be mediated, at least in part, by suppression of the local expression of chemokines, possibly through its strong anti-oxidant activity.</p>","PeriodicalId":10259,"journal":{"name":"Clinical and Experimental Pharmacology and Physiology","volume":"31 4","pages":"226-30"},"PeriodicalIF":2.4000,"publicationDate":"2004-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1111/j.1440-1681.2004.03981.x","citationCount":"11","resultStr":"{\"title\":\"A novel water-soluble vitamin E derivative prevents acute lung injury by bacterial endotoxin.\",\"authors\":\"Kazuhiko Uchiyama, Hirohisa Takano, Rie Yanagisawa, Ken-ichiro Inoue, Yuji Naito, Norimasa Yoshida, Shin Yoshino, Hironobu Murase, Takamichi Ichinose, Toshikazu Yoshikawa\",\"doi\":\"10.1111/j.1440-1681.2004.03981.x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>1. Various chemokines, such as keratinocyte chemoattractant (KC), macrophage inflammatory protein (MIP)-1alpha and macrophage chemoattractant protein (MCP)-1, are involved in the pathogenesis of acute lung injury induced by bacterial endotoxin (lipopolysaccharide; LPS). Oxidative stress is an important regulator of the expression of these chemokines, whereas vitamin E protects against LPS-induced insults. In the present study, we determined the effects of 2-(alpha-D-glucopyranosyl) methyl-2,5,7,8-tetramethylchroman-6-ol (TMG), a novel water-soluble vitamin E derivative with excellent anti-oxidant activity, on acute lung injury induced by intratracheal instillation of LPS (125 micro g/kg) in mice. 2. When TMG was administered intratracheally and intravenously (0.1, 1.0 or 10 mg/kg), it dose-dependently decreased the infiltration of neutrophils into bronchoalveolar lavage fluid after LPS challenge. 3. Histological examination showed that treatment with TMG ameliorated the LPS-induced infiltration of neutrophils into the lungs. Furthermore, TMG attenuated the LPS-induced increase in pulmonary expression of KC, MIP-1alpha and MCP-1 at both the transcriptional and translational levels. 4. These results indicate that TMG is a possible treatment for acute lung injury, especially that caused by Gram-negative bacteria. The therapeutic effect of TMG may be mediated, at least in part, by suppression of the local expression of chemokines, possibly through its strong anti-oxidant activity.</p>\",\"PeriodicalId\":10259,\"journal\":{\"name\":\"Clinical and Experimental Pharmacology and Physiology\",\"volume\":\"31 4\",\"pages\":\"226-30\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2004-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1111/j.1440-1681.2004.03981.x\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Clinical and Experimental Pharmacology and Physiology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1111/j.1440-1681.2004.03981.x\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical and Experimental Pharmacology and Physiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1111/j.1440-1681.2004.03981.x","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
A novel water-soluble vitamin E derivative prevents acute lung injury by bacterial endotoxin.
1. Various chemokines, such as keratinocyte chemoattractant (KC), macrophage inflammatory protein (MIP)-1alpha and macrophage chemoattractant protein (MCP)-1, are involved in the pathogenesis of acute lung injury induced by bacterial endotoxin (lipopolysaccharide; LPS). Oxidative stress is an important regulator of the expression of these chemokines, whereas vitamin E protects against LPS-induced insults. In the present study, we determined the effects of 2-(alpha-D-glucopyranosyl) methyl-2,5,7,8-tetramethylchroman-6-ol (TMG), a novel water-soluble vitamin E derivative with excellent anti-oxidant activity, on acute lung injury induced by intratracheal instillation of LPS (125 micro g/kg) in mice. 2. When TMG was administered intratracheally and intravenously (0.1, 1.0 or 10 mg/kg), it dose-dependently decreased the infiltration of neutrophils into bronchoalveolar lavage fluid after LPS challenge. 3. Histological examination showed that treatment with TMG ameliorated the LPS-induced infiltration of neutrophils into the lungs. Furthermore, TMG attenuated the LPS-induced increase in pulmonary expression of KC, MIP-1alpha and MCP-1 at both the transcriptional and translational levels. 4. These results indicate that TMG is a possible treatment for acute lung injury, especially that caused by Gram-negative bacteria. The therapeutic effect of TMG may be mediated, at least in part, by suppression of the local expression of chemokines, possibly through its strong anti-oxidant activity.
期刊介绍:
Clinical and Experimental Pharmacology and Physiology is an international journal founded in 1974 by Mike Rand, Austin Doyle, John Coghlan and Paul Korner. Our focus is new frontiers in physiology and pharmacology, emphasizing the translation of basic research to clinical practice. We publish original articles, invited reviews and our exciting, cutting-edge Frontiers-in-Research series’.