Yi Xu , Guoxiang You , Jinbao Yin , Mairan Zhang , Dengyun Peng , Junzeng Xu , Shihong Yang , Jun Hou
{"title":"耐盐进化促进了土壤微生物群中的抗生素抗性组:来自传播评估、宿主鉴定和共生探索的证据","authors":"Yi Xu , Guoxiang You , Jinbao Yin , Mairan Zhang , Dengyun Peng , Junzeng Xu , Shihong Yang , Jun Hou","doi":"10.1016/j.envpol.2022.120830","DOIUrl":null,"url":null,"abstract":"<div><p><span>Salinity<span><span> is considered as one of the vital factors affecting the profiles of antibiotic resistance genes (ARGs) in soils, whereby its roles in shaping the antibiotic resistome were still poorly understood. Here, metagenomic analysis was conducted to track the ARGs distributions and dissemination in soils during salt accumulation and </span>desalinization processes. Neutral-salt accumulation for 45 and 90 days significantly increased the relative abundances of ARGs and mobile genetic elements (MGEs) carrying antibiotic resistance contigs (ARCs). The ARGs within antibiotic efflux and target protection families primarily carried by </span></span><em>Streptomyces</em>, <em>Nocardioides</em>, <em>Rhodanobacter</em> and <em>Monashia</em> were largely enriched by salinity. The ARGs subtypes of the resistance-nodulation-division (RND) family, ATP-binding cassette (ABC) family, rRNA methyltransferase and other efflux were closely associated with MGEs, contributing to the enrichment of ARGs. Moreover, the ARGs subtypes and transposons were genetically linked with the salt-tolerance mechanisms of organic osmolyte transporters and K<sup>+</sup><span> uptake proteins on the same ARC, demonstrating the coselection of ARGs and halotolerant genes. Furthermore, the antibiotic resistome could recover to a normal state after the prolonged incubation by alleviating salt stress. Nevertheless, the acquisition of ARGs by opportunistic pathogens<span> after salt treatment was increased, serving to prioritize further efforts on the health risks correlated with resistance propagation and human exposure in saline soils.</span></span></p></div>","PeriodicalId":311,"journal":{"name":"Environmental Pollution","volume":"317 ","pages":"Article 120830"},"PeriodicalIF":7.6000,"publicationDate":"2023-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Salt tolerance evolution facilitates antibiotic resistome in soil microbiota: Evidences from dissemination evaluation, hosts identification and co-occurrence exploration\",\"authors\":\"Yi Xu , Guoxiang You , Jinbao Yin , Mairan Zhang , Dengyun Peng , Junzeng Xu , Shihong Yang , Jun Hou\",\"doi\":\"10.1016/j.envpol.2022.120830\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>Salinity<span><span> is considered as one of the vital factors affecting the profiles of antibiotic resistance genes (ARGs) in soils, whereby its roles in shaping the antibiotic resistome were still poorly understood. Here, metagenomic analysis was conducted to track the ARGs distributions and dissemination in soils during salt accumulation and </span>desalinization processes. Neutral-salt accumulation for 45 and 90 days significantly increased the relative abundances of ARGs and mobile genetic elements (MGEs) carrying antibiotic resistance contigs (ARCs). The ARGs within antibiotic efflux and target protection families primarily carried by </span></span><em>Streptomyces</em>, <em>Nocardioides</em>, <em>Rhodanobacter</em> and <em>Monashia</em> were largely enriched by salinity. The ARGs subtypes of the resistance-nodulation-division (RND) family, ATP-binding cassette (ABC) family, rRNA methyltransferase and other efflux were closely associated with MGEs, contributing to the enrichment of ARGs. Moreover, the ARGs subtypes and transposons were genetically linked with the salt-tolerance mechanisms of organic osmolyte transporters and K<sup>+</sup><span> uptake proteins on the same ARC, demonstrating the coselection of ARGs and halotolerant genes. Furthermore, the antibiotic resistome could recover to a normal state after the prolonged incubation by alleviating salt stress. Nevertheless, the acquisition of ARGs by opportunistic pathogens<span> after salt treatment was increased, serving to prioritize further efforts on the health risks correlated with resistance propagation and human exposure in saline soils.</span></span></p></div>\",\"PeriodicalId\":311,\"journal\":{\"name\":\"Environmental Pollution\",\"volume\":\"317 \",\"pages\":\"Article 120830\"},\"PeriodicalIF\":7.6000,\"publicationDate\":\"2023-01-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Pollution\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0269749122020450\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Pollution","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0269749122020450","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Salt tolerance evolution facilitates antibiotic resistome in soil microbiota: Evidences from dissemination evaluation, hosts identification and co-occurrence exploration
Salinity is considered as one of the vital factors affecting the profiles of antibiotic resistance genes (ARGs) in soils, whereby its roles in shaping the antibiotic resistome were still poorly understood. Here, metagenomic analysis was conducted to track the ARGs distributions and dissemination in soils during salt accumulation and desalinization processes. Neutral-salt accumulation for 45 and 90 days significantly increased the relative abundances of ARGs and mobile genetic elements (MGEs) carrying antibiotic resistance contigs (ARCs). The ARGs within antibiotic efflux and target protection families primarily carried by Streptomyces, Nocardioides, Rhodanobacter and Monashia were largely enriched by salinity. The ARGs subtypes of the resistance-nodulation-division (RND) family, ATP-binding cassette (ABC) family, rRNA methyltransferase and other efflux were closely associated with MGEs, contributing to the enrichment of ARGs. Moreover, the ARGs subtypes and transposons were genetically linked with the salt-tolerance mechanisms of organic osmolyte transporters and K+ uptake proteins on the same ARC, demonstrating the coselection of ARGs and halotolerant genes. Furthermore, the antibiotic resistome could recover to a normal state after the prolonged incubation by alleviating salt stress. Nevertheless, the acquisition of ARGs by opportunistic pathogens after salt treatment was increased, serving to prioritize further efforts on the health risks correlated with resistance propagation and human exposure in saline soils.
期刊介绍:
Environmental Pollution is an international peer-reviewed journal that publishes high-quality research papers and review articles covering all aspects of environmental pollution and its impacts on ecosystems and human health.
Subject areas include, but are not limited to:
• Sources and occurrences of pollutants that are clearly defined and measured in environmental compartments, food and food-related items, and human bodies;
• Interlinks between contaminant exposure and biological, ecological, and human health effects, including those of climate change;
• Contaminants of emerging concerns (including but not limited to antibiotic resistant microorganisms or genes, microplastics/nanoplastics, electronic wastes, light, and noise) and/or their biological, ecological, or human health effects;
• Laboratory and field studies on the remediation/mitigation of environmental pollution via new techniques and with clear links to biological, ecological, or human health effects;
• Modeling of pollution processes, patterns, or trends that is of clear environmental and/or human health interest;
• New techniques that measure and examine environmental occurrences, transport, behavior, and effects of pollutants within the environment or the laboratory, provided that they can be clearly used to address problems within regional or global environmental compartments.