关于视接触角依赖于跌落接触面积或三相接触线的争论:综述

IF 8.2 1区 化学 Q1 CHEMISTRY, PHYSICAL
H. Yildirim Erbil
{"title":"关于视接触角依赖于跌落接触面积或三相接触线的争论:综述","authors":"H. Yildirim Erbil","doi":"10.1016/j.surfrep.2014.09.001","DOIUrl":null,"url":null,"abstract":"<div><p>A sessile drop is an isolated drop which has been deposited on a solid substrate where the wetted area is limited by the three-phase contact line and characterized by contact angle, contact radius and drop height. Although, wetting has been studied using contact angles of drops on solids for more than 200 years, the question remains unanswered: Is wetting of a rough and chemically heterogeneous surface controlled by the interactions within the solid/liquid contact area beneath the droplet or only at the three-phase contact line? After the publications of Pease in 1945, Extrand in 1997, 2003 and Gao and McCarthy in 2007 and 2009, it was proposed that advancing, receding contact angles, and contact angle hysteresis<span><span> of rough and chemically heterogeneous surfaces are determined by interactions of the liquid and the solid at the three-phase contact line alone and the interfacial area within the contact perimeter is irrelevant. As a consequence of this statement, the well-known Wenzel (1934) and Cassie (1945) equations which were derived using the contact area approach are proposed to be invalid and should be abandoned. A hot debate started in the field of surface science after 2007, between the three-phase contact line and interfacial contact area approach defenders. This paper presents a review of the published articles on contact angles and summarizes the views of the both sides. After presenting a brief history of the contact angles and their measurement methods, we discussed the basic contact angle theory and applications of contact angles on the characterization of flat, rough and micropatterned </span>superhydrophobic surfaces. The weak and strong sides of both three-phase contact line and contact area approaches were discussed in detail and some practical conclusions were drawn.</span></p></div>","PeriodicalId":434,"journal":{"name":"Surface Science Reports","volume":"69 4","pages":"Pages 325-365"},"PeriodicalIF":8.2000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.surfrep.2014.09.001","citationCount":"231","resultStr":"{\"title\":\"The debate on the dependence of apparent contact angles on drop contact area or three-phase contact line: A review\",\"authors\":\"H. Yildirim Erbil\",\"doi\":\"10.1016/j.surfrep.2014.09.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A sessile drop is an isolated drop which has been deposited on a solid substrate where the wetted area is limited by the three-phase contact line and characterized by contact angle, contact radius and drop height. Although, wetting has been studied using contact angles of drops on solids for more than 200 years, the question remains unanswered: Is wetting of a rough and chemically heterogeneous surface controlled by the interactions within the solid/liquid contact area beneath the droplet or only at the three-phase contact line? After the publications of Pease in 1945, Extrand in 1997, 2003 and Gao and McCarthy in 2007 and 2009, it was proposed that advancing, receding contact angles, and contact angle hysteresis<span><span> of rough and chemically heterogeneous surfaces are determined by interactions of the liquid and the solid at the three-phase contact line alone and the interfacial area within the contact perimeter is irrelevant. As a consequence of this statement, the well-known Wenzel (1934) and Cassie (1945) equations which were derived using the contact area approach are proposed to be invalid and should be abandoned. A hot debate started in the field of surface science after 2007, between the three-phase contact line and interfacial contact area approach defenders. This paper presents a review of the published articles on contact angles and summarizes the views of the both sides. After presenting a brief history of the contact angles and their measurement methods, we discussed the basic contact angle theory and applications of contact angles on the characterization of flat, rough and micropatterned </span>superhydrophobic surfaces. The weak and strong sides of both three-phase contact line and contact area approaches were discussed in detail and some practical conclusions were drawn.</span></p></div>\",\"PeriodicalId\":434,\"journal\":{\"name\":\"Surface Science Reports\",\"volume\":\"69 4\",\"pages\":\"Pages 325-365\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2014-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.surfrep.2014.09.001\",\"citationCount\":\"231\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Surface Science Reports\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167572914000223\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surface Science Reports","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167572914000223","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 231

摘要

无基液滴是一种孤立的液滴,它沉积在固体基材上,其中湿润区域受三相接触线的限制,并以接触角、接触半径和液滴高度为特征。尽管使用液滴在固体上的接触角研究润湿已有200多年的历史,但问题仍然没有得到解答:粗糙和化学不均匀表面的润湿是由液滴下方固/液接触区域内的相互作用控制的,还是仅在三相接触线上?Pease(1945)、Extrand(1997、2003)、Gao和McCarthy(2007、2009)提出粗糙表面和化学非均质表面的前进、后退接触角和接触角滞后仅由三相接触线上的液固相互作用决定,与接触周内的界面面积无关。由于这种说法,使用接触面积方法推导的著名的Wenzel(1934)和Cassie(1945)方程被认为是无效的,应该放弃。2007年以后,在表面科学领域开始了一场关于三相接触线和界面接触面积接近辩护者之间的激烈争论。本文对已发表的接触角度相关文章进行了综述,并对双方的观点进行了总结。在简要介绍了接触角及其测量方法的历史之后,我们讨论了接触角的基本理论以及接触角在平面、粗糙和微图案超疏水表面表征中的应用。详细讨论了三相接触线法和接触区法的弱侧和强侧,并得出了一些实用的结论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The debate on the dependence of apparent contact angles on drop contact area or three-phase contact line: A review

A sessile drop is an isolated drop which has been deposited on a solid substrate where the wetted area is limited by the three-phase contact line and characterized by contact angle, contact radius and drop height. Although, wetting has been studied using contact angles of drops on solids for more than 200 years, the question remains unanswered: Is wetting of a rough and chemically heterogeneous surface controlled by the interactions within the solid/liquid contact area beneath the droplet or only at the three-phase contact line? After the publications of Pease in 1945, Extrand in 1997, 2003 and Gao and McCarthy in 2007 and 2009, it was proposed that advancing, receding contact angles, and contact angle hysteresis of rough and chemically heterogeneous surfaces are determined by interactions of the liquid and the solid at the three-phase contact line alone and the interfacial area within the contact perimeter is irrelevant. As a consequence of this statement, the well-known Wenzel (1934) and Cassie (1945) equations which were derived using the contact area approach are proposed to be invalid and should be abandoned. A hot debate started in the field of surface science after 2007, between the three-phase contact line and interfacial contact area approach defenders. This paper presents a review of the published articles on contact angles and summarizes the views of the both sides. After presenting a brief history of the contact angles and their measurement methods, we discussed the basic contact angle theory and applications of contact angles on the characterization of flat, rough and micropatterned superhydrophobic surfaces. The weak and strong sides of both three-phase contact line and contact area approaches were discussed in detail and some practical conclusions were drawn.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Surface Science Reports
Surface Science Reports 化学-物理:凝聚态物理
CiteScore
15.90
自引率
2.00%
发文量
9
审稿时长
178 days
期刊介绍: Surface Science Reports is a journal that specializes in invited review papers on experimental and theoretical studies in the physics, chemistry, and pioneering applications of surfaces, interfaces, and nanostructures. The topics covered in the journal aim to contribute to a better understanding of the fundamental phenomena that occur on surfaces and interfaces, as well as the application of this knowledge to the development of materials, processes, and devices. In this journal, the term "surfaces" encompasses all interfaces between solids, liquids, polymers, biomaterials, nanostructures, soft matter, gases, and vacuum. Additionally, the journal includes reviews of experimental techniques and methods used to characterize surfaces and surface processes, such as those based on the interactions of photons, electrons, and ions with surfaces.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信