QMLE:基于分位数的快速、稳健、高效的分布函数估计。

Scott Brown, Andrew Heathcote
{"title":"QMLE:基于分位数的快速、稳健、高效的分布函数估计。","authors":"Scott Brown,&nbsp;Andrew Heathcote","doi":"10.3758/bf03195527","DOIUrl":null,"url":null,"abstract":"<p><p>Quantile maximum likelihood (QML) is an estimation technique, proposed by Heathcote, Brown, and Mewhort (2002), that provides robust and efficient estimates of distribution parameters, typically for response time data, in sample sizes as small as 40 observations. In view of the computational difficulty inherent in implementing QML, we provide open-source Fortran 90 code that calculates QML estimates for parameters of the ex-Gaussian distribution, as well as standard maximum likelihood estimates. We show that parameter estimates from QML are asymptotically unbiased and normally distributed. Our software provides asymptotically correct standard error and parameter intercorrelation estimates, as well as producing the outputs required for constructing quantile-quantile plots. The code is parallelizable and can easily be modified to estimate parameters from other distributions. Compiled binaries, as well as the source code, example analysis files, and a detailed manual, are available for free on the Internet.</p>","PeriodicalId":79800,"journal":{"name":"Behavior research methods, instruments, & computers : a journal of the Psychonomic Society, Inc","volume":"35 4","pages":"485-92"},"PeriodicalIF":0.0000,"publicationDate":"2003-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3758/bf03195527","citationCount":"80","resultStr":"{\"title\":\"QMLE: fast, robust, and efficient estimation of distribution functions based on quantiles.\",\"authors\":\"Scott Brown,&nbsp;Andrew Heathcote\",\"doi\":\"10.3758/bf03195527\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Quantile maximum likelihood (QML) is an estimation technique, proposed by Heathcote, Brown, and Mewhort (2002), that provides robust and efficient estimates of distribution parameters, typically for response time data, in sample sizes as small as 40 observations. In view of the computational difficulty inherent in implementing QML, we provide open-source Fortran 90 code that calculates QML estimates for parameters of the ex-Gaussian distribution, as well as standard maximum likelihood estimates. We show that parameter estimates from QML are asymptotically unbiased and normally distributed. Our software provides asymptotically correct standard error and parameter intercorrelation estimates, as well as producing the outputs required for constructing quantile-quantile plots. The code is parallelizable and can easily be modified to estimate parameters from other distributions. Compiled binaries, as well as the source code, example analysis files, and a detailed manual, are available for free on the Internet.</p>\",\"PeriodicalId\":79800,\"journal\":{\"name\":\"Behavior research methods, instruments, & computers : a journal of the Psychonomic Society, Inc\",\"volume\":\"35 4\",\"pages\":\"485-92\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.3758/bf03195527\",\"citationCount\":\"80\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Behavior research methods, instruments, & computers : a journal of the Psychonomic Society, Inc\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3758/bf03195527\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Behavior research methods, instruments, & computers : a journal of the Psychonomic Society, Inc","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3758/bf03195527","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 80

摘要

分位数最大似然(QML)是由Heathcote, Brown和Mewhort(2002)提出的一种估计技术,它提供了分布参数的稳健和有效的估计,通常用于响应时间数据,样样量小至40个观测值。鉴于实现QML固有的计算难度,我们提供了开源的Fortran 90代码,用于计算前高斯分布参数的QML估计,以及标准的最大似然估计。我们证明了QML的参数估计是渐近无偏和正态分布的。我们的软件提供渐近正确的标准误差和参数相互关系估计,以及产生构建分位数-分位数图所需的输出。代码是可并行的,可以很容易地修改以估计来自其他发行版的参数。编译后的二进制文件以及源代码、示例分析文件和详细的手册都可以在Internet上免费获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
QMLE: fast, robust, and efficient estimation of distribution functions based on quantiles.

Quantile maximum likelihood (QML) is an estimation technique, proposed by Heathcote, Brown, and Mewhort (2002), that provides robust and efficient estimates of distribution parameters, typically for response time data, in sample sizes as small as 40 observations. In view of the computational difficulty inherent in implementing QML, we provide open-source Fortran 90 code that calculates QML estimates for parameters of the ex-Gaussian distribution, as well as standard maximum likelihood estimates. We show that parameter estimates from QML are asymptotically unbiased and normally distributed. Our software provides asymptotically correct standard error and parameter intercorrelation estimates, as well as producing the outputs required for constructing quantile-quantile plots. The code is parallelizable and can easily be modified to estimate parameters from other distributions. Compiled binaries, as well as the source code, example analysis files, and a detailed manual, are available for free on the Internet.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信