A Amit, V S Saxena, N Pratibha, P D'Souza, M Bagchi, D Bagchi, S J Stohs
{"title":"一种治疗变应性鼻炎的新型植物制剂Aller-7具有稳定肥大细胞、抑制脂氧合酶、抑制透明质酸酶、抗组胺和抗痉挛活性。","authors":"A Amit, V S Saxena, N Pratibha, P D'Souza, M Bagchi, D Bagchi, S J Stohs","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Allergic rhinitis, also known as hay fever, rose fever or summer catarrh, is a major challenge to health professionals. A large number of the world's population, including approximately 40 million Americans, suffers from allergic rhinitis. A novel, botanical formulation (Aller-7) has been developed for the treatment of allergic rhinitis using a combination of extracts from seven medicinal plants, including Phyllanthus emblica, Terminalia chebula, T. bellerica, Albizia lebbeck, Piper nigrum, Zingiber officinale and P. longum, which have a proven history of efficacy and health benefits. The clinical manifestations of allergy are due to a number of mediators that are released from mast cells. The effect of Aller-7 on rat mesenteric mast cell degranulation was studied by incubating different concentrations of Aller-7 and challenging them with a degranulating agent, compound 48/80. The inhibitory activity of Aller-7 was determined against lipoxygenase and hyaluronidase, the key enzymes involved in the initiation and maintenance of inflammatory responses. Furthermore, most of these manifestations are due to histamine, which causes vasodilatation, increasing capillary permeability and leading to bronchoconstriction. Hence, the antihistaminic activity of Aller-7 was determined is isolated guinea pig ileum substrate using cetirizine as a positive control. The antispasmodic effect of Aller-7 on contractions of guinea pig tracheal chain was determined using papaverine and cetirizine as controls. Aller-7 exhibited potent activity in all these in vitro models tested, thus demonstrating the novel anti-allergic potential of Aller-7.</p>","PeriodicalId":11336,"journal":{"name":"Drugs under experimental and clinical research","volume":"29 3","pages":"107-15"},"PeriodicalIF":0.0000,"publicationDate":"2003-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mast cell stabilization, lipoxygenase inhibition, hyaluronidase inhibition, antihistaminic and antispasmodic activities of Aller-7, a novel botanical formulation for allergic rhinitis.\",\"authors\":\"A Amit, V S Saxena, N Pratibha, P D'Souza, M Bagchi, D Bagchi, S J Stohs\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Allergic rhinitis, also known as hay fever, rose fever or summer catarrh, is a major challenge to health professionals. A large number of the world's population, including approximately 40 million Americans, suffers from allergic rhinitis. A novel, botanical formulation (Aller-7) has been developed for the treatment of allergic rhinitis using a combination of extracts from seven medicinal plants, including Phyllanthus emblica, Terminalia chebula, T. bellerica, Albizia lebbeck, Piper nigrum, Zingiber officinale and P. longum, which have a proven history of efficacy and health benefits. The clinical manifestations of allergy are due to a number of mediators that are released from mast cells. The effect of Aller-7 on rat mesenteric mast cell degranulation was studied by incubating different concentrations of Aller-7 and challenging them with a degranulating agent, compound 48/80. The inhibitory activity of Aller-7 was determined against lipoxygenase and hyaluronidase, the key enzymes involved in the initiation and maintenance of inflammatory responses. Furthermore, most of these manifestations are due to histamine, which causes vasodilatation, increasing capillary permeability and leading to bronchoconstriction. Hence, the antihistaminic activity of Aller-7 was determined is isolated guinea pig ileum substrate using cetirizine as a positive control. The antispasmodic effect of Aller-7 on contractions of guinea pig tracheal chain was determined using papaverine and cetirizine as controls. Aller-7 exhibited potent activity in all these in vitro models tested, thus demonstrating the novel anti-allergic potential of Aller-7.</p>\",\"PeriodicalId\":11336,\"journal\":{\"name\":\"Drugs under experimental and clinical research\",\"volume\":\"29 3\",\"pages\":\"107-15\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Drugs under experimental and clinical research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drugs under experimental and clinical research","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Mast cell stabilization, lipoxygenase inhibition, hyaluronidase inhibition, antihistaminic and antispasmodic activities of Aller-7, a novel botanical formulation for allergic rhinitis.
Allergic rhinitis, also known as hay fever, rose fever or summer catarrh, is a major challenge to health professionals. A large number of the world's population, including approximately 40 million Americans, suffers from allergic rhinitis. A novel, botanical formulation (Aller-7) has been developed for the treatment of allergic rhinitis using a combination of extracts from seven medicinal plants, including Phyllanthus emblica, Terminalia chebula, T. bellerica, Albizia lebbeck, Piper nigrum, Zingiber officinale and P. longum, which have a proven history of efficacy and health benefits. The clinical manifestations of allergy are due to a number of mediators that are released from mast cells. The effect of Aller-7 on rat mesenteric mast cell degranulation was studied by incubating different concentrations of Aller-7 and challenging them with a degranulating agent, compound 48/80. The inhibitory activity of Aller-7 was determined against lipoxygenase and hyaluronidase, the key enzymes involved in the initiation and maintenance of inflammatory responses. Furthermore, most of these manifestations are due to histamine, which causes vasodilatation, increasing capillary permeability and leading to bronchoconstriction. Hence, the antihistaminic activity of Aller-7 was determined is isolated guinea pig ileum substrate using cetirizine as a positive control. The antispasmodic effect of Aller-7 on contractions of guinea pig tracheal chain was determined using papaverine and cetirizine as controls. Aller-7 exhibited potent activity in all these in vitro models tested, thus demonstrating the novel anti-allergic potential of Aller-7.