Belinda Vallejo-Cordoba, Miguel A Mazorra-Manzano, Aarón F González-Córdova
{"title":"电泳介导微量分析测定肉中β -羟酰基辅酶a-脱氢酶活性。","authors":"Belinda Vallejo-Cordoba, Miguel A Mazorra-Manzano, Aarón F González-Córdova","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>The combined use of an in-tube enzyme assay and capillary electrophoresis for determining beta-hydroxyacyl CoA-dehydrogenase (beta-HADH) activity in meat was investigated. Beta-HADH is a significant mitochondrial enzyme in food muscle; thus, the determination of its activity is important in food analysis. The enzymatic assay and the separation of the reaction products were carried out by electrophoretically mediated microanalysis (EMMA) using a plug-plug reaction mode at variable potential. For the quantification of beta-HADH activity, the rate of conversion of reduced beta-nicotinamide adenine dinucleotide (NADH) to beta-nicotinamide adenine dinucleotide (NAD+) was calculated by determining NAD+ at 260 nm. A calibration curve for NAD+ concentration versus normalized areas showed a highly significant (p < 0.001) linear relationship (R2 = 0.993). Accurate quantification of beta-HADH activity was achieved since on-line monitoring allowed us to account for the NAD+ produced from NADH degradation by applying a correction factor. An average reaction time of 0.66 +/- 0.06 sec was determined for a protein concentration in the range of 0.1-0.5 mg protein/mL. The assay was reproducible since coefficients of variation of less than 6.2% were calculated for triplicate analyses.</p>","PeriodicalId":15060,"journal":{"name":"Journal of capillary electrophoresis and microchip technology","volume":"8 3-4","pages":"81-6"},"PeriodicalIF":0.0000,"publicationDate":"2003-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Determination of beta-hydroxyacyl CoA-dehydrogenase activity in meat by electrophoretically mediated microanalysis.\",\"authors\":\"Belinda Vallejo-Cordoba, Miguel A Mazorra-Manzano, Aarón F González-Córdova\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The combined use of an in-tube enzyme assay and capillary electrophoresis for determining beta-hydroxyacyl CoA-dehydrogenase (beta-HADH) activity in meat was investigated. Beta-HADH is a significant mitochondrial enzyme in food muscle; thus, the determination of its activity is important in food analysis. The enzymatic assay and the separation of the reaction products were carried out by electrophoretically mediated microanalysis (EMMA) using a plug-plug reaction mode at variable potential. For the quantification of beta-HADH activity, the rate of conversion of reduced beta-nicotinamide adenine dinucleotide (NADH) to beta-nicotinamide adenine dinucleotide (NAD+) was calculated by determining NAD+ at 260 nm. A calibration curve for NAD+ concentration versus normalized areas showed a highly significant (p < 0.001) linear relationship (R2 = 0.993). Accurate quantification of beta-HADH activity was achieved since on-line monitoring allowed us to account for the NAD+ produced from NADH degradation by applying a correction factor. An average reaction time of 0.66 +/- 0.06 sec was determined for a protein concentration in the range of 0.1-0.5 mg protein/mL. The assay was reproducible since coefficients of variation of less than 6.2% were calculated for triplicate analyses.</p>\",\"PeriodicalId\":15060,\"journal\":{\"name\":\"Journal of capillary electrophoresis and microchip technology\",\"volume\":\"8 3-4\",\"pages\":\"81-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of capillary electrophoresis and microchip technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of capillary electrophoresis and microchip technology","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Determination of beta-hydroxyacyl CoA-dehydrogenase activity in meat by electrophoretically mediated microanalysis.
The combined use of an in-tube enzyme assay and capillary electrophoresis for determining beta-hydroxyacyl CoA-dehydrogenase (beta-HADH) activity in meat was investigated. Beta-HADH is a significant mitochondrial enzyme in food muscle; thus, the determination of its activity is important in food analysis. The enzymatic assay and the separation of the reaction products were carried out by electrophoretically mediated microanalysis (EMMA) using a plug-plug reaction mode at variable potential. For the quantification of beta-HADH activity, the rate of conversion of reduced beta-nicotinamide adenine dinucleotide (NADH) to beta-nicotinamide adenine dinucleotide (NAD+) was calculated by determining NAD+ at 260 nm. A calibration curve for NAD+ concentration versus normalized areas showed a highly significant (p < 0.001) linear relationship (R2 = 0.993). Accurate quantification of beta-HADH activity was achieved since on-line monitoring allowed us to account for the NAD+ produced from NADH degradation by applying a correction factor. An average reaction time of 0.66 +/- 0.06 sec was determined for a protein concentration in the range of 0.1-0.5 mg protein/mL. The assay was reproducible since coefficients of variation of less than 6.2% were calculated for triplicate analyses.