M J Bellini, M P Polo, M J T de Alaniz, M G de Bravo
{"title":"辛伐他汀对A549细胞棕榈酸、二同γ -亚油酸和α -亚麻酸摄取和代谢转化的影响。","authors":"M J Bellini, M P Polo, M J T de Alaniz, M G de Bravo","doi":"10.1016/s0952-3278(03)00149-2","DOIUrl":null,"url":null,"abstract":"<p><p>It is well known that simvastatin affects cholesterol synthesis. Furthermore it inhibits growth and proliferation and perturbs fatty acid metabolism in some cell lines. We have studied the effects of simvastatin on the uptake and metabolism of exogenous fatty acid in the human lung adenocarcinoma A549 cells. Simvastatin inhibited the proliferation of A549, and caused an increment in phospholipid/cholesterol ratio due to an increment in phospholipid content without affecting cholesterol content. All the fatty acids were uptaken and metabolized in both control and treated cells. The conversion of palmitic, linoleic and dihomo-gamma-linoleic acids to their metabolites and products/precursor ratios for the desaturation and elongation reactions showed that simvastatin enhanced the Delta5 desaturation step and altered some elongating steps. The machinery for unsaturated fatty acid synthesis in A549 is quite sensitive to simvastatin and its effects could have important implication taking into account that highly unsaturated fatty acids are involved in the regulation of diverse cellular functions by themselves or through their metabolites.</p>","PeriodicalId":20659,"journal":{"name":"Prostaglandins, leukotrienes, and essential fatty acids","volume":"69 5","pages":"351-7"},"PeriodicalIF":2.9000,"publicationDate":"2003-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/s0952-3278(03)00149-2","citationCount":"11","resultStr":"{\"title\":\"Effect of simvastatin on the uptake and metabolic conversion of palmitic, dihomo-gamma-linoleic and alpha-linolenic acids in A549 cells.\",\"authors\":\"M J Bellini, M P Polo, M J T de Alaniz, M G de Bravo\",\"doi\":\"10.1016/s0952-3278(03)00149-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>It is well known that simvastatin affects cholesterol synthesis. Furthermore it inhibits growth and proliferation and perturbs fatty acid metabolism in some cell lines. We have studied the effects of simvastatin on the uptake and metabolism of exogenous fatty acid in the human lung adenocarcinoma A549 cells. Simvastatin inhibited the proliferation of A549, and caused an increment in phospholipid/cholesterol ratio due to an increment in phospholipid content without affecting cholesterol content. All the fatty acids were uptaken and metabolized in both control and treated cells. The conversion of palmitic, linoleic and dihomo-gamma-linoleic acids to their metabolites and products/precursor ratios for the desaturation and elongation reactions showed that simvastatin enhanced the Delta5 desaturation step and altered some elongating steps. The machinery for unsaturated fatty acid synthesis in A549 is quite sensitive to simvastatin and its effects could have important implication taking into account that highly unsaturated fatty acids are involved in the regulation of diverse cellular functions by themselves or through their metabolites.</p>\",\"PeriodicalId\":20659,\"journal\":{\"name\":\"Prostaglandins, leukotrienes, and essential fatty acids\",\"volume\":\"69 5\",\"pages\":\"351-7\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2003-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/s0952-3278(03)00149-2\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Prostaglandins, leukotrienes, and essential fatty acids\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/s0952-3278(03)00149-2\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Prostaglandins, leukotrienes, and essential fatty acids","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/s0952-3278(03)00149-2","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Effect of simvastatin on the uptake and metabolic conversion of palmitic, dihomo-gamma-linoleic and alpha-linolenic acids in A549 cells.
It is well known that simvastatin affects cholesterol synthesis. Furthermore it inhibits growth and proliferation and perturbs fatty acid metabolism in some cell lines. We have studied the effects of simvastatin on the uptake and metabolism of exogenous fatty acid in the human lung adenocarcinoma A549 cells. Simvastatin inhibited the proliferation of A549, and caused an increment in phospholipid/cholesterol ratio due to an increment in phospholipid content without affecting cholesterol content. All the fatty acids were uptaken and metabolized in both control and treated cells. The conversion of palmitic, linoleic and dihomo-gamma-linoleic acids to their metabolites and products/precursor ratios for the desaturation and elongation reactions showed that simvastatin enhanced the Delta5 desaturation step and altered some elongating steps. The machinery for unsaturated fatty acid synthesis in A549 is quite sensitive to simvastatin and its effects could have important implication taking into account that highly unsaturated fatty acids are involved in the regulation of diverse cellular functions by themselves or through their metabolites.
期刊介绍:
The role of lipids, including essential fatty acids and their prostaglandin, leukotriene and other derivatives, is now evident in almost all areas of biomedical science. Cell membrane behaviour and cell signalling in all tissues are highly dependent on the lipid constituents of cells. Prostaglandins, Leukotrienes & Essential Fatty Acids aims to cover all aspects of the roles of lipids in cellular, organ and whole organism function, and places a particular emphasis on human studies. Papers concerning all medical specialties are published. Much of the material is particularly relevant to the development of novel treatments for disease.