D.-H. Kim , F. Ebrahimi , M.V. Manuel , J.S. Tulenko , S.R. Phillpot
{"title":"分子动力学模拟纳米纹理Mg晶界激活锥体位错","authors":"D.-H. Kim , F. Ebrahimi , M.V. Manuel , J.S. Tulenko , S.R. Phillpot","doi":"10.1016/j.msea.2011.02.082","DOIUrl":null,"url":null,"abstract":"<div><p>The generation and structures of first- and second-order pyramidal 〈<em>c</em> <!-->+<!--> <em>a</em>〉 dislocations, <span><math><mrow><mn>1</mn><mo>/</mo><mn>3</mn><mo>{</mo><mn>1</mn><mtext></mtext><mn>0</mn><mtext></mtext><mover><mn>1</mn><mo>¯</mo></mover><mtext></mtext><mn>1</mn><mo>}</mo><mtext></mtext><mo>〈</mo><mover><mn>1</mn><mo>¯</mo></mover><mtext></mtext><mover><mn>1</mn><mo>¯</mo></mover><mtext></mtext><mn>2</mn><mtext></mtext><mn>3</mn><mo>〉</mo></mrow></math></span> and <span><math><mrow><mn>1</mn><mo>/</mo><mn>3</mn><mo>{</mo><mn>1</mn><mtext></mtext><mn>1</mn><mtext></mtext><mover><mn>2</mn><mo>¯</mo></mover><mtext></mtext><mn>2</mn><mo>}</mo><mtext></mtext><mo>〈</mo><mover><mn>1</mn><mo>¯</mo></mover><mtext></mtext><mover><mn>1</mn><mo>¯</mo></mover><mtext></mtext><mn>2</mn><mtext></mtext><mn>3</mn><mo>〉</mo></mrow></math></span>, are determined in pure magnesium using molecular dynamics simulation. In particular, simulations of <span><math><mrow><mo>[</mo><mn>1</mn><mtext></mtext><mn>1</mn><mtext></mtext><mover><mn>2</mn><mo>¯</mo></mover><mtext></mtext><mn>0</mn><mo>]</mo><mtext>-</mtext></mrow></math></span> and <span><math><mrow><mo>[</mo><mn>1</mn><mtext></mtext><mn>0</mn><mtext></mtext><mover><mn>1</mn><mo>¯</mo></mover><mtext></mtext><mn>0</mn><mo>]</mo><mtext>-textured</mtext></mrow></math></span> polycrystalline Mg display pyramidal 〈<em>c</em> <!-->+<!--> <em>a</em>〉 slip nucleated at grain boundaries. Both the first- and second-order dislocations appear as a partial or extended edge type. In the <span><math><mrow><mo>[</mo><mn>1</mn><mtext></mtext><mn>1</mn><mtext></mtext><mover><mn>2</mn><mo>¯</mo></mover><mtext></mtext><mn>0</mn><mo>]</mo><mtext>-textured</mtext></mrow></math></span> Mg, the first-order pyramidal 〈<em>c</em> <!-->+<!--> <em>a</em>〉 slip occurs with <span><math><mrow><mn>1</mn><mo>/</mo><mn>6</mn><mo>〈</mo><mover><mn>2</mn><mo>¯</mo></mover><mtext></mtext><mn>0</mn><mtext></mtext><mn>2</mn><mtext></mtext><mn>3</mn><mo>〉</mo></mrow></math></span> partials or <span><math><mrow><mn>1</mn><mo>/</mo><mn>9</mn><mo>[</mo><mn>0</mn><mtext></mtext><mover><mn>1</mn><mo>¯</mo></mover><mtext></mtext><mn>1</mn><mtext></mtext><mn>3</mn><mo>]</mo><mo>+</mo><mn>1</mn><mo>/</mo><mn>18</mn><mo>[</mo><mover><mn>6</mn><mo>¯</mo></mover><mtext></mtext><mn>2</mn><mtext></mtext><mn>4</mn><mtext></mtext><mn>3</mn><mo>]</mo><mo>+</mo><mn>1</mn><mo>/</mo><mn>6</mn><mo>[</mo><mn>0</mn><mtext></mtext><mover><mn>2</mn><mo>¯</mo></mover><mtext></mtext><mn>2</mn><mtext></mtext><mn>3</mn><mo>]</mo></mrow></math></span> extended dislocations. Secondary pyramidal dislocations are created with edge type from grain boundaries in the <span><math><mrow><mo>[</mo><mn>1</mn><mtext></mtext><mn>0</mn><mtext></mtext><mover><mn>1</mn><mo>¯</mo></mover><mtext></mtext><mn>0</mn><mo>]</mo><mtext>-texture</mtext></mrow></math></span>. The pyramidal 〈<em>c</em> <!-->+<!--> <em>a</em>〉 slip on the <span><math><mrow><mo>{</mo><mn>1</mn><mtext></mtext><mn>1</mn><mtext></mtext><mover><mn>2</mn><mo>¯</mo></mover><mtext></mtext><mn>2</mn><mo>}</mo></mrow></math></span> plane can extend to the basal plane, on which it is terminated by a screw dislocation on the <span><math><mrow><mo>{</mo><mn>1</mn><mtext></mtext><mn>0</mn><mtext></mtext><mover><mn>1</mn><mo>¯</mo></mover><mtext></mtext><mn>1</mn><mo>}</mo></mrow></math></span> plane.</p></div>","PeriodicalId":385,"journal":{"name":"Materials Science and Engineering: A","volume":"528 16","pages":"Pages 5411-5420"},"PeriodicalIF":7.0000,"publicationDate":"2011-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.msea.2011.02.082","citationCount":"43","resultStr":"{\"title\":\"Grain-boundary activated pyramidal dislocations in nano-textured Mg by molecular dynamics simulation\",\"authors\":\"D.-H. Kim , F. Ebrahimi , M.V. Manuel , J.S. Tulenko , S.R. Phillpot\",\"doi\":\"10.1016/j.msea.2011.02.082\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The generation and structures of first- and second-order pyramidal 〈<em>c</em> <!-->+<!--> <em>a</em>〉 dislocations, <span><math><mrow><mn>1</mn><mo>/</mo><mn>3</mn><mo>{</mo><mn>1</mn><mtext></mtext><mn>0</mn><mtext></mtext><mover><mn>1</mn><mo>¯</mo></mover><mtext></mtext><mn>1</mn><mo>}</mo><mtext></mtext><mo>〈</mo><mover><mn>1</mn><mo>¯</mo></mover><mtext></mtext><mover><mn>1</mn><mo>¯</mo></mover><mtext></mtext><mn>2</mn><mtext></mtext><mn>3</mn><mo>〉</mo></mrow></math></span> and <span><math><mrow><mn>1</mn><mo>/</mo><mn>3</mn><mo>{</mo><mn>1</mn><mtext></mtext><mn>1</mn><mtext></mtext><mover><mn>2</mn><mo>¯</mo></mover><mtext></mtext><mn>2</mn><mo>}</mo><mtext></mtext><mo>〈</mo><mover><mn>1</mn><mo>¯</mo></mover><mtext></mtext><mover><mn>1</mn><mo>¯</mo></mover><mtext></mtext><mn>2</mn><mtext></mtext><mn>3</mn><mo>〉</mo></mrow></math></span>, are determined in pure magnesium using molecular dynamics simulation. In particular, simulations of <span><math><mrow><mo>[</mo><mn>1</mn><mtext></mtext><mn>1</mn><mtext></mtext><mover><mn>2</mn><mo>¯</mo></mover><mtext></mtext><mn>0</mn><mo>]</mo><mtext>-</mtext></mrow></math></span> and <span><math><mrow><mo>[</mo><mn>1</mn><mtext></mtext><mn>0</mn><mtext></mtext><mover><mn>1</mn><mo>¯</mo></mover><mtext></mtext><mn>0</mn><mo>]</mo><mtext>-textured</mtext></mrow></math></span> polycrystalline Mg display pyramidal 〈<em>c</em> <!-->+<!--> <em>a</em>〉 slip nucleated at grain boundaries. Both the first- and second-order dislocations appear as a partial or extended edge type. In the <span><math><mrow><mo>[</mo><mn>1</mn><mtext></mtext><mn>1</mn><mtext></mtext><mover><mn>2</mn><mo>¯</mo></mover><mtext></mtext><mn>0</mn><mo>]</mo><mtext>-textured</mtext></mrow></math></span> Mg, the first-order pyramidal 〈<em>c</em> <!-->+<!--> <em>a</em>〉 slip occurs with <span><math><mrow><mn>1</mn><mo>/</mo><mn>6</mn><mo>〈</mo><mover><mn>2</mn><mo>¯</mo></mover><mtext></mtext><mn>0</mn><mtext></mtext><mn>2</mn><mtext></mtext><mn>3</mn><mo>〉</mo></mrow></math></span> partials or <span><math><mrow><mn>1</mn><mo>/</mo><mn>9</mn><mo>[</mo><mn>0</mn><mtext></mtext><mover><mn>1</mn><mo>¯</mo></mover><mtext></mtext><mn>1</mn><mtext></mtext><mn>3</mn><mo>]</mo><mo>+</mo><mn>1</mn><mo>/</mo><mn>18</mn><mo>[</mo><mover><mn>6</mn><mo>¯</mo></mover><mtext></mtext><mn>2</mn><mtext></mtext><mn>4</mn><mtext></mtext><mn>3</mn><mo>]</mo><mo>+</mo><mn>1</mn><mo>/</mo><mn>6</mn><mo>[</mo><mn>0</mn><mtext></mtext><mover><mn>2</mn><mo>¯</mo></mover><mtext></mtext><mn>2</mn><mtext></mtext><mn>3</mn><mo>]</mo></mrow></math></span> extended dislocations. Secondary pyramidal dislocations are created with edge type from grain boundaries in the <span><math><mrow><mo>[</mo><mn>1</mn><mtext></mtext><mn>0</mn><mtext></mtext><mover><mn>1</mn><mo>¯</mo></mover><mtext></mtext><mn>0</mn><mo>]</mo><mtext>-texture</mtext></mrow></math></span>. The pyramidal 〈<em>c</em> <!-->+<!--> <em>a</em>〉 slip on the <span><math><mrow><mo>{</mo><mn>1</mn><mtext></mtext><mn>1</mn><mtext></mtext><mover><mn>2</mn><mo>¯</mo></mover><mtext></mtext><mn>2</mn><mo>}</mo></mrow></math></span> plane can extend to the basal plane, on which it is terminated by a screw dislocation on the <span><math><mrow><mo>{</mo><mn>1</mn><mtext></mtext><mn>0</mn><mtext></mtext><mover><mn>1</mn><mo>¯</mo></mover><mtext></mtext><mn>1</mn><mo>}</mo></mrow></math></span> plane.</p></div>\",\"PeriodicalId\":385,\"journal\":{\"name\":\"Materials Science and Engineering: A\",\"volume\":\"528 16\",\"pages\":\"Pages 5411-5420\"},\"PeriodicalIF\":7.0000,\"publicationDate\":\"2011-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.msea.2011.02.082\",\"citationCount\":\"43\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Science and Engineering: A\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0921509311002577\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science and Engineering: A","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921509311002577","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 43
摘要
用分子动力学模拟方法测定了纯镁中1/3{101¯1}< 1¯1¯23 >和1/3{112¯2}< 1¯1¯23 >的一阶和二阶锥体< c + a >位错的生成和结构。特别是,模拟[112¯0]和[101¯0]织构的多晶Mg在晶界处显示出金字塔形的< c + a >滑移成核。一阶和二阶位错都表现为部分边缘型或扩展边缘型。在[112¯0]纹理的Mg中,一阶锥体< c + a >滑移发生在1/6 < 2¯023 >偏位或1/9[01¯13]+1/18[6¯243]+1/6[02¯23]扩展位错中。二次锥体位错是由[101¯0]-纹理中的晶界产生的边缘类型。{112¯2}平面上的锥体< c + a >滑移可以延伸到基面上,在基面上由{101¯1}平面上的螺位错终止。
Grain-boundary activated pyramidal dislocations in nano-textured Mg by molecular dynamics simulation
The generation and structures of first- and second-order pyramidal 〈c + a〉 dislocations, and , are determined in pure magnesium using molecular dynamics simulation. In particular, simulations of and polycrystalline Mg display pyramidal 〈c + a〉 slip nucleated at grain boundaries. Both the first- and second-order dislocations appear as a partial or extended edge type. In the Mg, the first-order pyramidal 〈c + a〉 slip occurs with partials or extended dislocations. Secondary pyramidal dislocations are created with edge type from grain boundaries in the . The pyramidal 〈c + a〉 slip on the plane can extend to the basal plane, on which it is terminated by a screw dislocation on the plane.
期刊介绍:
Materials Science and Engineering A provides an international medium for the publication of theoretical and experimental studies related to the load-bearing capacity of materials as influenced by their basic properties, processing history, microstructure and operating environment. Appropriate submissions to Materials Science and Engineering A should include scientific and/or engineering factors which affect the microstructure - strength relationships of materials and report the changes to mechanical behavior.