{"title":"太赫兹生物光子学作为研究生物组织和液体的介电和光谱特性的工具","authors":"O.A. Smolyanskaya , N.V. Chernomyrdin , A.A. Konovko , K.I. Zaytsev , I.A. Ozheredov , O.P. Cherkasova , M.M. Nazarov , J.-P. Guillet , S.A. Kozlov , Yu. V. Kistenev , J.-L. Coutaz , P. Mounaix , V.L. Vaks , J.-H. Son , H. Cheon , V.P. Wallace , Yu. Feldman , I. Popov , A.N. Yaroslavsky , A.P. Shkurinov , V.V. Tuchin","doi":"10.1016/j.pquantelec.2018.10.001","DOIUrl":null,"url":null,"abstract":"<div><p>In this review, we describe dielectric properties<span><span> of biological tissues and liquids in the context of terahertz (THz) biophotonics. We discuss a model of the THz dielectric permittivity of water and water-containing media, which yields analysis of the relaxation and damped resonant molecules modes. We briefly describe modern techniques of THz spectroscopy and imaging employed in biophotonics with a strong emphasize on a THz time-domain spectroscopy. Furthermore, we consider the methods of sub-wavelength resolution THz imaging and the problem of THz wave delivery to hard to access tissues and internal organs. We consider the THz dielectric properties of biological solutions and liquids. Although strong absorption by water molecules prevents THz-waves from penetration of hydrated tissues and probing biological molecules in aqueous solutions, we discuss approaches for overcoming these drawbacks – novel techniques of freezing and temporal dehydration by application of hyperosmotic agents which have a potential for cancer detection. We review recent applications of THz technology in diagnosis of malignancies and aiding histology paying particular attention to the origin of contrast observed between healthy and pathological tissues. We consider recent applications of THz reflectometry in sensing the thinning dynamics of human pre-corneal tear film. Modern modalities of THz imaging, which relies on the concepts of multi-spectral and multi-temporal domains and employing the principles of color vision, phase analysis and </span>tomography<span> are discussed. Novel methods of THz spectra analysis based on machine learning, pattern recognition, chemical imaging and the revealing of the spatial distribution of various substances in a tissue, are analyzed. Advanced thermal model describing biological object irradiated by THz waves and phantoms mimicking the optical properties of tissues at THz frequencies are presented. Finally, application of the high-resolution THz spectroscopy in analytic chemistry, biology and medicine are described.</span></span></p></div>","PeriodicalId":414,"journal":{"name":"Progress in Quantum Electronics","volume":"62 ","pages":"Pages 1-77"},"PeriodicalIF":7.4000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.pquantelec.2018.10.001","citationCount":"191","resultStr":"{\"title\":\"Terahertz biophotonics as a tool for studies of dielectric and spectral properties of biological tissues and liquids\",\"authors\":\"O.A. Smolyanskaya , N.V. Chernomyrdin , A.A. Konovko , K.I. Zaytsev , I.A. Ozheredov , O.P. Cherkasova , M.M. Nazarov , J.-P. Guillet , S.A. Kozlov , Yu. V. Kistenev , J.-L. Coutaz , P. Mounaix , V.L. Vaks , J.-H. Son , H. Cheon , V.P. Wallace , Yu. Feldman , I. Popov , A.N. Yaroslavsky , A.P. Shkurinov , V.V. Tuchin\",\"doi\":\"10.1016/j.pquantelec.2018.10.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this review, we describe dielectric properties<span><span> of biological tissues and liquids in the context of terahertz (THz) biophotonics. We discuss a model of the THz dielectric permittivity of water and water-containing media, which yields analysis of the relaxation and damped resonant molecules modes. We briefly describe modern techniques of THz spectroscopy and imaging employed in biophotonics with a strong emphasize on a THz time-domain spectroscopy. Furthermore, we consider the methods of sub-wavelength resolution THz imaging and the problem of THz wave delivery to hard to access tissues and internal organs. We consider the THz dielectric properties of biological solutions and liquids. Although strong absorption by water molecules prevents THz-waves from penetration of hydrated tissues and probing biological molecules in aqueous solutions, we discuss approaches for overcoming these drawbacks – novel techniques of freezing and temporal dehydration by application of hyperosmotic agents which have a potential for cancer detection. We review recent applications of THz technology in diagnosis of malignancies and aiding histology paying particular attention to the origin of contrast observed between healthy and pathological tissues. We consider recent applications of THz reflectometry in sensing the thinning dynamics of human pre-corneal tear film. Modern modalities of THz imaging, which relies on the concepts of multi-spectral and multi-temporal domains and employing the principles of color vision, phase analysis and </span>tomography<span> are discussed. Novel methods of THz spectra analysis based on machine learning, pattern recognition, chemical imaging and the revealing of the spatial distribution of various substances in a tissue, are analyzed. Advanced thermal model describing biological object irradiated by THz waves and phantoms mimicking the optical properties of tissues at THz frequencies are presented. Finally, application of the high-resolution THz spectroscopy in analytic chemistry, biology and medicine are described.</span></span></p></div>\",\"PeriodicalId\":414,\"journal\":{\"name\":\"Progress in Quantum Electronics\",\"volume\":\"62 \",\"pages\":\"Pages 1-77\"},\"PeriodicalIF\":7.4000,\"publicationDate\":\"2018-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.pquantelec.2018.10.001\",\"citationCount\":\"191\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Quantum Electronics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0079672718300454\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Quantum Electronics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0079672718300454","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Terahertz biophotonics as a tool for studies of dielectric and spectral properties of biological tissues and liquids
In this review, we describe dielectric properties of biological tissues and liquids in the context of terahertz (THz) biophotonics. We discuss a model of the THz dielectric permittivity of water and water-containing media, which yields analysis of the relaxation and damped resonant molecules modes. We briefly describe modern techniques of THz spectroscopy and imaging employed in biophotonics with a strong emphasize on a THz time-domain spectroscopy. Furthermore, we consider the methods of sub-wavelength resolution THz imaging and the problem of THz wave delivery to hard to access tissues and internal organs. We consider the THz dielectric properties of biological solutions and liquids. Although strong absorption by water molecules prevents THz-waves from penetration of hydrated tissues and probing biological molecules in aqueous solutions, we discuss approaches for overcoming these drawbacks – novel techniques of freezing and temporal dehydration by application of hyperosmotic agents which have a potential for cancer detection. We review recent applications of THz technology in diagnosis of malignancies and aiding histology paying particular attention to the origin of contrast observed between healthy and pathological tissues. We consider recent applications of THz reflectometry in sensing the thinning dynamics of human pre-corneal tear film. Modern modalities of THz imaging, which relies on the concepts of multi-spectral and multi-temporal domains and employing the principles of color vision, phase analysis and tomography are discussed. Novel methods of THz spectra analysis based on machine learning, pattern recognition, chemical imaging and the revealing of the spatial distribution of various substances in a tissue, are analyzed. Advanced thermal model describing biological object irradiated by THz waves and phantoms mimicking the optical properties of tissues at THz frequencies are presented. Finally, application of the high-resolution THz spectroscopy in analytic chemistry, biology and medicine are described.
期刊介绍:
Progress in Quantum Electronics, established in 1969, is an esteemed international review journal dedicated to sharing cutting-edge topics in quantum electronics and its applications. The journal disseminates papers covering theoretical and experimental aspects of contemporary research, including advances in physics, technology, and engineering relevant to quantum electronics. It also encourages interdisciplinary research, welcoming papers that contribute new knowledge in areas such as bio and nano-related work.