Zhang-Kai Zhou , Jingfeng Liu , Yanjun Bao , Lin Wu , Ching Eng Png , Xue-Hua Wang , Cheng-Wei Qiu
{"title":"量子等离子体学得到应用","authors":"Zhang-Kai Zhou , Jingfeng Liu , Yanjun Bao , Lin Wu , Ching Eng Png , Xue-Hua Wang , Cheng-Wei Qiu","doi":"10.1016/j.pquantelec.2019.04.002","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>Plasmons, the </span>electromagnetic<span> excitations coupled with electron waves, possess the intrinsic ability of manipulating light at subwavelength scales down to picometer. This ability not only helps uncovering the fascinating quantum behaviors that strengthen the basic understanding of quantum science, but also enables the inventions of various quantum optoelectronic devices, triggering the birth of quantum plasmonic technology. The past decade has witnessed the flourishing of this technology. In this review, we first focus on fundamental investigations into quantum behaviors for both “isolated” plasmonic </span></span>nanostructures and “coupled” plasmon-emitter systems, emphasizing new theoretical frameworks and experimental advances. Leveraging on these fundamentals, the progress in exploring and applying quantum plasmonic devices is discussed, such as quantum plasmonic circuits, nanolasers, biochemistry, and spin-orbit interaction devices. Upon summarizing the past and present developments, the future research directions and promising applications are highlighted.</p></div>","PeriodicalId":414,"journal":{"name":"Progress in Quantum Electronics","volume":null,"pages":null},"PeriodicalIF":7.4000,"publicationDate":"2019-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.pquantelec.2019.04.002","citationCount":"61","resultStr":"{\"title\":\"Quantum plasmonics get applied\",\"authors\":\"Zhang-Kai Zhou , Jingfeng Liu , Yanjun Bao , Lin Wu , Ching Eng Png , Xue-Hua Wang , Cheng-Wei Qiu\",\"doi\":\"10.1016/j.pquantelec.2019.04.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span><span>Plasmons, the </span>electromagnetic<span> excitations coupled with electron waves, possess the intrinsic ability of manipulating light at subwavelength scales down to picometer. This ability not only helps uncovering the fascinating quantum behaviors that strengthen the basic understanding of quantum science, but also enables the inventions of various quantum optoelectronic devices, triggering the birth of quantum plasmonic technology. The past decade has witnessed the flourishing of this technology. In this review, we first focus on fundamental investigations into quantum behaviors for both “isolated” plasmonic </span></span>nanostructures and “coupled” plasmon-emitter systems, emphasizing new theoretical frameworks and experimental advances. Leveraging on these fundamentals, the progress in exploring and applying quantum plasmonic devices is discussed, such as quantum plasmonic circuits, nanolasers, biochemistry, and spin-orbit interaction devices. Upon summarizing the past and present developments, the future research directions and promising applications are highlighted.</p></div>\",\"PeriodicalId\":414,\"journal\":{\"name\":\"Progress in Quantum Electronics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.4000,\"publicationDate\":\"2019-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.pquantelec.2019.04.002\",\"citationCount\":\"61\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Quantum Electronics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0079672719300084\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Quantum Electronics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0079672719300084","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Plasmons, the electromagnetic excitations coupled with electron waves, possess the intrinsic ability of manipulating light at subwavelength scales down to picometer. This ability not only helps uncovering the fascinating quantum behaviors that strengthen the basic understanding of quantum science, but also enables the inventions of various quantum optoelectronic devices, triggering the birth of quantum plasmonic technology. The past decade has witnessed the flourishing of this technology. In this review, we first focus on fundamental investigations into quantum behaviors for both “isolated” plasmonic nanostructures and “coupled” plasmon-emitter systems, emphasizing new theoretical frameworks and experimental advances. Leveraging on these fundamentals, the progress in exploring and applying quantum plasmonic devices is discussed, such as quantum plasmonic circuits, nanolasers, biochemistry, and spin-orbit interaction devices. Upon summarizing the past and present developments, the future research directions and promising applications are highlighted.
期刊介绍:
Progress in Quantum Electronics, established in 1969, is an esteemed international review journal dedicated to sharing cutting-edge topics in quantum electronics and its applications. The journal disseminates papers covering theoretical and experimental aspects of contemporary research, including advances in physics, technology, and engineering relevant to quantum electronics. It also encourages interdisciplinary research, welcoming papers that contribute new knowledge in areas such as bio and nano-related work.