Gen Sazaki, Ken Nagashima, Ken-ichiro Murata, Yoshinori Furukawa
{"title":"用光学显微镜对晶体表面进行原位观察","authors":"Gen Sazaki, Ken Nagashima, Ken-ichiro Murata, Yoshinori Furukawa","doi":"10.1016/j.pcrysgrow.2016.04.024","DOIUrl":null,"url":null,"abstract":"<div><p>In this experimental course, attendees will learn how to obtain useful information about growth processes of crystals using ordinary optical microscopes, which are usually available in laboratories. We will demonstrate how thicknesses of crystals can be estimated from interference colors. We will also show in-situ observations of spiral steps and strain distributions by differential interference contrast microscopy and polarizing microscopy, respectively.</p></div>","PeriodicalId":409,"journal":{"name":"Progress in Crystal Growth and Characterization of Materials","volume":"62 2","pages":"Pages 408-412"},"PeriodicalIF":4.5000,"publicationDate":"2016-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.pcrysgrow.2016.04.024","citationCount":"3","resultStr":"{\"title\":\"In-situ observation of crystal surfaces by optical microscopy\",\"authors\":\"Gen Sazaki, Ken Nagashima, Ken-ichiro Murata, Yoshinori Furukawa\",\"doi\":\"10.1016/j.pcrysgrow.2016.04.024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this experimental course, attendees will learn how to obtain useful information about growth processes of crystals using ordinary optical microscopes, which are usually available in laboratories. We will demonstrate how thicknesses of crystals can be estimated from interference colors. We will also show in-situ observations of spiral steps and strain distributions by differential interference contrast microscopy and polarizing microscopy, respectively.</p></div>\",\"PeriodicalId\":409,\"journal\":{\"name\":\"Progress in Crystal Growth and Characterization of Materials\",\"volume\":\"62 2\",\"pages\":\"Pages 408-412\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2016-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.pcrysgrow.2016.04.024\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Crystal Growth and Characterization of Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0960897416300274\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CRYSTALLOGRAPHY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Crystal Growth and Characterization of Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960897416300274","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CRYSTALLOGRAPHY","Score":null,"Total":0}
In-situ observation of crystal surfaces by optical microscopy
In this experimental course, attendees will learn how to obtain useful information about growth processes of crystals using ordinary optical microscopes, which are usually available in laboratories. We will demonstrate how thicknesses of crystals can be estimated from interference colors. We will also show in-situ observations of spiral steps and strain distributions by differential interference contrast microscopy and polarizing microscopy, respectively.
期刊介绍:
Materials especially crystalline materials provide the foundation of our modern technologically driven world. The domination of materials is achieved through detailed scientific research.
Advances in the techniques of growing and assessing ever more perfect crystals of a wide range of materials lie at the roots of much of today''s advanced technology. The evolution and development of crystalline materials involves research by dedicated scientists in academia as well as industry involving a broad field of disciplines including biology, chemistry, physics, material sciences and engineering. Crucially important applications in information technology, photonics, energy storage and harvesting, environmental protection, medicine and food production require a deep understanding of and control of crystal growth. This can involve suitable growth methods and material characterization from the bulk down to the nano-scale.