2-甲基-1,3-二恶氧烷的高温中红外吸收及反应动力学的实验与理论研究

IF 3.261
Mohammad Adil , Binod Raj Giri , Tam V.-T. Mai , Milán Szőri , Lam K. Huynh , Aamir Farooq
{"title":"2-甲基-1,3-二恶氧烷的高温中红外吸收及反应动力学的实验与理论研究","authors":"Mohammad Adil ,&nbsp;Binod Raj Giri ,&nbsp;Tam V.-T. Mai ,&nbsp;Milán Szőri ,&nbsp;Lam K. Huynh ,&nbsp;Aamir Farooq","doi":"10.1016/j.jpap.2023.100165","DOIUrl":null,"url":null,"abstract":"<div><p>This work reports the mid-IR spectroscopy and reaction kinetics of 2-methyl-1,3-dioxolane (2M13DO). We carried out spectroscopic measurements to deduce temperature-dependent absorption cross-sections of 2M13DO over a broad wavelength range of 8.4–10.5 μm (950–1190 cm<sup>−1</sup>). For these measurements, we employed a rapidly tuning MIRcat-QT™ laser that can be operated either at a fixed wavelength or scanned mode over wide wavelength regions. By operating the laser at a fixed wavelength, we monitored the decay of 2M13DO behind reflected shock waves over <em>T</em><sub>5</sub> = 1050–1400 K and <em>P</em><sub>5</sub> = 0.7 and 2.6 bar. Our measured concentration time-histories of 2M13DO allowed us to directly extract the overall rate coefficients for the unimolecular decomposition of 2M13DO using the first-order rate law. We did not observe any pressure dependence in the measured rate coefficients, indicating that the reaction is close to the high-pressure limit. By employing the W1U composite method, we explored the important pyrolysis reaction pathways of 2M13DO in the reactive potential energy surface. Three important reaction channels, namely, 2M13DO → CH<sub>2</sub><img>CHOCH<sub>2</sub>CH<sub>2</sub>OH (<strong>IM1</strong>), 2M13DO → 2CH<sub>3</sub>CHO (<strong>P3</strong>), 2M13DO → CH<sub>3</sub> + 1,3-dioxolan-2-yl (<strong>P4</strong>) were identified. Below 700 K, <strong>IM1</strong> forming channel is dominant, whereas CH<sub>3</sub>CHO formation is dominant under our experimental conditions. Above 1500 K, the radical forming channel (CH<sub>3</sub>+<strong>P4</strong>) takes over other channels. At higher temperatures, the contribution of the radical forming channel continually increases, accounting for ∼ 99% at 2000 K. We used the stochastic RRKM-ME model to predict the pressure and temperature dependence of the rate coefficients, <em>k</em>(<em>T, P</em>), and time-resolved species profiles. Our theory showed excellent agreement with the measured rate coefficients. These are the first direct determination of the rate coefficients of the unimolecular decomposition of 2M13DO.</p></div>","PeriodicalId":375,"journal":{"name":"Journal of Photochemistry and Photobiology","volume":"13 ","pages":"Article 100165"},"PeriodicalIF":3.2610,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"High-temperature mid-IR absorption and reaction kinetics of 2-methyl-1,3-dioxolane: An experimental and theoretical study\",\"authors\":\"Mohammad Adil ,&nbsp;Binod Raj Giri ,&nbsp;Tam V.-T. Mai ,&nbsp;Milán Szőri ,&nbsp;Lam K. Huynh ,&nbsp;Aamir Farooq\",\"doi\":\"10.1016/j.jpap.2023.100165\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This work reports the mid-IR spectroscopy and reaction kinetics of 2-methyl-1,3-dioxolane (2M13DO). We carried out spectroscopic measurements to deduce temperature-dependent absorption cross-sections of 2M13DO over a broad wavelength range of 8.4–10.5 μm (950–1190 cm<sup>−1</sup>). For these measurements, we employed a rapidly tuning MIRcat-QT™ laser that can be operated either at a fixed wavelength or scanned mode over wide wavelength regions. By operating the laser at a fixed wavelength, we monitored the decay of 2M13DO behind reflected shock waves over <em>T</em><sub>5</sub> = 1050–1400 K and <em>P</em><sub>5</sub> = 0.7 and 2.6 bar. Our measured concentration time-histories of 2M13DO allowed us to directly extract the overall rate coefficients for the unimolecular decomposition of 2M13DO using the first-order rate law. We did not observe any pressure dependence in the measured rate coefficients, indicating that the reaction is close to the high-pressure limit. By employing the W1U composite method, we explored the important pyrolysis reaction pathways of 2M13DO in the reactive potential energy surface. Three important reaction channels, namely, 2M13DO → CH<sub>2</sub><img>CHOCH<sub>2</sub>CH<sub>2</sub>OH (<strong>IM1</strong>), 2M13DO → 2CH<sub>3</sub>CHO (<strong>P3</strong>), 2M13DO → CH<sub>3</sub> + 1,3-dioxolan-2-yl (<strong>P4</strong>) were identified. Below 700 K, <strong>IM1</strong> forming channel is dominant, whereas CH<sub>3</sub>CHO formation is dominant under our experimental conditions. Above 1500 K, the radical forming channel (CH<sub>3</sub>+<strong>P4</strong>) takes over other channels. At higher temperatures, the contribution of the radical forming channel continually increases, accounting for ∼ 99% at 2000 K. We used the stochastic RRKM-ME model to predict the pressure and temperature dependence of the rate coefficients, <em>k</em>(<em>T, P</em>), and time-resolved species profiles. Our theory showed excellent agreement with the measured rate coefficients. These are the first direct determination of the rate coefficients of the unimolecular decomposition of 2M13DO.</p></div>\",\"PeriodicalId\":375,\"journal\":{\"name\":\"Journal of Photochemistry and Photobiology\",\"volume\":\"13 \",\"pages\":\"Article 100165\"},\"PeriodicalIF\":3.2610,\"publicationDate\":\"2023-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Photochemistry and Photobiology\",\"FirstCategoryId\":\"2\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666469023000064\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Photochemistry and Photobiology","FirstCategoryId":"2","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666469023000064","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文报道了2-甲基-1,3-二恶烷(2M13DO)的中红外光谱和反应动力学。我们进行了光谱测量,以推断2M13DO在8.4-10.5 μm (950-1190 cm−1)宽波长范围内的温度依赖吸收截面。对于这些测量,我们采用了快速调谐的MIRcat-QT™激光器,可以在固定波长或宽波长区域的扫描模式下操作。通过在固定波长下操作激光器,我们监测了在T5 = 1050 - 1400k和P5 = 0.7和2.6 bar条件下反射激波后2M13DO的衰减。我们测量的2M13DO的浓度时程允许我们使用一级速率定律直接提取2M13DO单分子分解的总速率系数。我们在测量的速率系数中没有观察到任何压力依赖性,表明反应接近高压极限。采用W1U复合方法,在反应势能面探索了2M13DO的重要热解反应途径。确定了2M13DO→CH2CHOCH2CH2OH (IM1)、2M13DO→2CH3CHO (P3)、2M13DO→CH3 + 1,3-二氧杂酚-2-基(P4)三个重要反应通道。在700 K以下,IM1形成通道占主导地位,CH3CHO形成通道占主导地位。在1500 K以上,自由基形成通道(CH3+P4)取代其他通道。在较高的温度下,自由基形成通道的贡献不断增加,在2000 K时占到约99%。我们使用随机RRKM-ME模型来预测速率系数、k(T, P)和时间分辨物种分布对压力和温度的依赖性。我们的理论与测量的速率系数非常吻合。这是对2M13DO单分子分解速率系数的首次直接测定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
High-temperature mid-IR absorption and reaction kinetics of 2-methyl-1,3-dioxolane: An experimental and theoretical study

This work reports the mid-IR spectroscopy and reaction kinetics of 2-methyl-1,3-dioxolane (2M13DO). We carried out spectroscopic measurements to deduce temperature-dependent absorption cross-sections of 2M13DO over a broad wavelength range of 8.4–10.5 μm (950–1190 cm−1). For these measurements, we employed a rapidly tuning MIRcat-QT™ laser that can be operated either at a fixed wavelength or scanned mode over wide wavelength regions. By operating the laser at a fixed wavelength, we monitored the decay of 2M13DO behind reflected shock waves over T5 = 1050–1400 K and P5 = 0.7 and 2.6 bar. Our measured concentration time-histories of 2M13DO allowed us to directly extract the overall rate coefficients for the unimolecular decomposition of 2M13DO using the first-order rate law. We did not observe any pressure dependence in the measured rate coefficients, indicating that the reaction is close to the high-pressure limit. By employing the W1U composite method, we explored the important pyrolysis reaction pathways of 2M13DO in the reactive potential energy surface. Three important reaction channels, namely, 2M13DO → CH2CHOCH2CH2OH (IM1), 2M13DO → 2CH3CHO (P3), 2M13DO → CH3 + 1,3-dioxolan-2-yl (P4) were identified. Below 700 K, IM1 forming channel is dominant, whereas CH3CHO formation is dominant under our experimental conditions. Above 1500 K, the radical forming channel (CH3+P4) takes over other channels. At higher temperatures, the contribution of the radical forming channel continually increases, accounting for ∼ 99% at 2000 K. We used the stochastic RRKM-ME model to predict the pressure and temperature dependence of the rate coefficients, k(T, P), and time-resolved species profiles. Our theory showed excellent agreement with the measured rate coefficients. These are the first direct determination of the rate coefficients of the unimolecular decomposition of 2M13DO.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信