初级神经元和胶质细胞在不透射线植入式神经修复材料上的功能附着

IF 4.7 4区 医学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Kendell M. Pawelec PhD , Jeremy M.L. Hix LATG , Erik M. Shapiro PhD
{"title":"初级神经元和胶质细胞在不透射线植入式神经修复材料上的功能附着","authors":"Kendell M. Pawelec PhD ,&nbsp;Jeremy M.L. Hix LATG ,&nbsp;Erik M. Shapiro PhD","doi":"10.1016/j.nano.2023.102692","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>Repairing peripheral nerve<span><span> injuries remains a challenge, even with use of auxiliary implantable biomaterial conduits. After implantation the location or function of polymeric devices cannot be assessed via clinical </span>imaging modalities<span><span>. Adding nanoparticle contrast agents into polymers can introduce radiopacity enabling imaging using computed </span>tomography. Radiopacity must be balanced with changes in </span></span></span>material properties<span><span> impacting device function. In this study radiopaque<span> composites were made from polycaprolactone and poly(lactide-co-glycolide) 50:50 and 85:15 with 0–40 wt% </span></span>tantalum oxide (TaO</span></span><sub>x</sub>) nanoparticles. To achieve radiopacity, ≥5 wt% TaO<sub>x</sub> was required, with ≥20 wt% TaO<sub>x</sub><span><span> reducing mechanical properties<span> and causing nanoscale </span></span>surface roughness<span><span>. Composite films facilitated </span>nerve regeneration<span> in an in vitro co-culture of adult glia and neurons, measured by markers for myelination. The ability of radiopaque films to support regeneration was driven by the properties of the polymer, with 5–20 wt% TaO</span></span></span><sub>x</sub> balancing imaging functionality with biological response and proving that in situ monitoring is feasible.</p></div>","PeriodicalId":396,"journal":{"name":"Nanomedicine: Nanotechnology, Biology and Medicine","volume":"52 ","pages":"Article 102692"},"PeriodicalIF":4.7000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Functional attachment of primary neurons and glia on radiopaque implantable biomaterials for nerve repair\",\"authors\":\"Kendell M. Pawelec PhD ,&nbsp;Jeremy M.L. Hix LATG ,&nbsp;Erik M. Shapiro PhD\",\"doi\":\"10.1016/j.nano.2023.102692\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span><span>Repairing peripheral nerve<span><span> injuries remains a challenge, even with use of auxiliary implantable biomaterial conduits. After implantation the location or function of polymeric devices cannot be assessed via clinical </span>imaging modalities<span><span>. Adding nanoparticle contrast agents into polymers can introduce radiopacity enabling imaging using computed </span>tomography. Radiopacity must be balanced with changes in </span></span></span>material properties<span><span> impacting device function. In this study radiopaque<span> composites were made from polycaprolactone and poly(lactide-co-glycolide) 50:50 and 85:15 with 0–40 wt% </span></span>tantalum oxide (TaO</span></span><sub>x</sub>) nanoparticles. To achieve radiopacity, ≥5 wt% TaO<sub>x</sub> was required, with ≥20 wt% TaO<sub>x</sub><span><span> reducing mechanical properties<span> and causing nanoscale </span></span>surface roughness<span><span>. Composite films facilitated </span>nerve regeneration<span> in an in vitro co-culture of adult glia and neurons, measured by markers for myelination. The ability of radiopaque films to support regeneration was driven by the properties of the polymer, with 5–20 wt% TaO</span></span></span><sub>x</sub> balancing imaging functionality with biological response and proving that in situ monitoring is feasible.</p></div>\",\"PeriodicalId\":396,\"journal\":{\"name\":\"Nanomedicine: Nanotechnology, Biology and Medicine\",\"volume\":\"52 \",\"pages\":\"Article 102692\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanomedicine: Nanotechnology, Biology and Medicine\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1549963423000436\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomedicine: Nanotechnology, Biology and Medicine","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1549963423000436","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

修复周围神经损伤仍然是一个挑战,即使使用辅助植入式生物材料导管。植入后,聚合物装置的位置或功能不能通过临床成像方式评估。在聚合物中加入纳米颗粒造影剂可以引入不透射线,从而实现计算机断层成像。不透明度必须与影响器件功能的材料特性变化相平衡。在本研究中,以聚己内酯和聚(丙交酯-羟基乙酸酯)50:50和85:15与0-40 wt%的氧化钽(TaOx)纳米颗粒为原料制备了不透射线复合材料。为了达到射线不透明度,需要≥5 wt%的TaOx,≥20 wt%的TaOx会降低机械性能并导致纳米级表面粗糙度。复合膜促进了成人胶质细胞和神经元体外共培养的神经再生,通过髓鞘形成标志物进行测量。不透射线薄膜支持再生的能力是由聚合物的特性驱动的,5-20 wt%的TaOx平衡了成像功能和生物反应,证明了原位监测是可行的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Functional attachment of primary neurons and glia on radiopaque implantable biomaterials for nerve repair

Functional attachment of primary neurons and glia on radiopaque implantable biomaterials for nerve repair

Repairing peripheral nerve injuries remains a challenge, even with use of auxiliary implantable biomaterial conduits. After implantation the location or function of polymeric devices cannot be assessed via clinical imaging modalities. Adding nanoparticle contrast agents into polymers can introduce radiopacity enabling imaging using computed tomography. Radiopacity must be balanced with changes in material properties impacting device function. In this study radiopaque composites were made from polycaprolactone and poly(lactide-co-glycolide) 50:50 and 85:15 with 0–40 wt% tantalum oxide (TaOx) nanoparticles. To achieve radiopacity, ≥5 wt% TaOx was required, with ≥20 wt% TaOx reducing mechanical properties and causing nanoscale surface roughness. Composite films facilitated nerve regeneration in an in vitro co-culture of adult glia and neurons, measured by markers for myelination. The ability of radiopaque films to support regeneration was driven by the properties of the polymer, with 5–20 wt% TaOx balancing imaging functionality with biological response and proving that in situ monitoring is feasible.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.10
自引率
3.60%
发文量
104
审稿时长
4.6 months
期刊介绍: Nanomedicine: Nanotechnology, Biology and Medicine (NBM) is an international, peer-reviewed journal presenting novel, significant, and interdisciplinary theoretical and experimental results related to nanoscience and nanotechnology in the life and health sciences. Content includes basic, translational, and clinical research addressing diagnosis, treatment, monitoring, prediction, and prevention of diseases.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信