纳米药物用二氧化硅纳米颗粒的合成及表面功能化

IF 8.2 1区 化学 Q1 CHEMISTRY, PHYSICAL
Alexander Liberman , Natalie Mendez , William C. Trogler , Andrew C. Kummel
{"title":"纳米药物用二氧化硅纳米颗粒的合成及表面功能化","authors":"Alexander Liberman ,&nbsp;Natalie Mendez ,&nbsp;William C. Trogler ,&nbsp;Andrew C. Kummel","doi":"10.1016/j.surfrep.2014.07.001","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>There are a wide variety of silica nanoformulations being investigated for biomedical applications. Silica </span>nanoparticles can be produced using a wide variety of synthetic techniques with precise control over their physical and chemical characteristics. Inorganic nanoformulations are often criticized or neglected for their poor tolerance; however, extensive studies into silica nanoparticle biodistributions and toxicology have shown that silica nanoparticles may be well tolerated, and in some case are excreted or are biodegradable. Robust synthetic techniques have allowed silica nanoparticles to be developed for applications such as biomedical imaging contrast agents, ablative therapy sensitizers, and </span>drug delivery vehicles. This review explores the synthetic techniques used to create and modify an assortment of silica nanoformulations, as well as several of the diagnostic and therapeutic applications.</p></div>","PeriodicalId":434,"journal":{"name":"Surface Science Reports","volume":"69 2","pages":"Pages 132-158"},"PeriodicalIF":8.2000,"publicationDate":"2014-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.surfrep.2014.07.001","citationCount":"389","resultStr":"{\"title\":\"Synthesis and surface functionalization of silica nanoparticles for nanomedicine\",\"authors\":\"Alexander Liberman ,&nbsp;Natalie Mendez ,&nbsp;William C. Trogler ,&nbsp;Andrew C. Kummel\",\"doi\":\"10.1016/j.surfrep.2014.07.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span><span>There are a wide variety of silica nanoformulations being investigated for biomedical applications. Silica </span>nanoparticles can be produced using a wide variety of synthetic techniques with precise control over their physical and chemical characteristics. Inorganic nanoformulations are often criticized or neglected for their poor tolerance; however, extensive studies into silica nanoparticle biodistributions and toxicology have shown that silica nanoparticles may be well tolerated, and in some case are excreted or are biodegradable. Robust synthetic techniques have allowed silica nanoparticles to be developed for applications such as biomedical imaging contrast agents, ablative therapy sensitizers, and </span>drug delivery vehicles. This review explores the synthetic techniques used to create and modify an assortment of silica nanoformulations, as well as several of the diagnostic and therapeutic applications.</p></div>\",\"PeriodicalId\":434,\"journal\":{\"name\":\"Surface Science Reports\",\"volume\":\"69 2\",\"pages\":\"Pages 132-158\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2014-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.surfrep.2014.07.001\",\"citationCount\":\"389\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Surface Science Reports\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167572914000107\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surface Science Reports","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167572914000107","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 389

摘要

有各种各样的二氧化硅纳米配方正在研究生物医学应用。二氧化硅纳米颗粒可以使用多种合成技术生产,并精确控制其物理和化学特性。无机纳米配方因其耐受性差而经常受到批评或忽视;然而,对二氧化硅纳米颗粒生物分布和毒理学的广泛研究表明,二氧化硅纳米颗粒可能具有良好的耐受性,并且在某些情况下可以排出体外或可生物降解。强大的合成技术使得二氧化硅纳米颗粒的应用得以发展,如生物医学成像造影剂、消融治疗增敏剂和药物输送载体。本综述探讨了用于创建和修改各种二氧化硅纳米配方的合成技术,以及几种诊断和治疗应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Synthesis and surface functionalization of silica nanoparticles for nanomedicine

There are a wide variety of silica nanoformulations being investigated for biomedical applications. Silica nanoparticles can be produced using a wide variety of synthetic techniques with precise control over their physical and chemical characteristics. Inorganic nanoformulations are often criticized or neglected for their poor tolerance; however, extensive studies into silica nanoparticle biodistributions and toxicology have shown that silica nanoparticles may be well tolerated, and in some case are excreted or are biodegradable. Robust synthetic techniques have allowed silica nanoparticles to be developed for applications such as biomedical imaging contrast agents, ablative therapy sensitizers, and drug delivery vehicles. This review explores the synthetic techniques used to create and modify an assortment of silica nanoformulations, as well as several of the diagnostic and therapeutic applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Surface Science Reports
Surface Science Reports 化学-物理:凝聚态物理
CiteScore
15.90
自引率
2.00%
发文量
9
审稿时长
178 days
期刊介绍: Surface Science Reports is a journal that specializes in invited review papers on experimental and theoretical studies in the physics, chemistry, and pioneering applications of surfaces, interfaces, and nanostructures. The topics covered in the journal aim to contribute to a better understanding of the fundamental phenomena that occur on surfaces and interfaces, as well as the application of this knowledge to the development of materials, processes, and devices. In this journal, the term "surfaces" encompasses all interfaces between solids, liquids, polymers, biomaterials, nanostructures, soft matter, gases, and vacuum. Additionally, the journal includes reviews of experimental techniques and methods used to characterize surfaces and surface processes, such as those based on the interactions of photons, electrons, and ions with surfaces.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信