海上输送管道二氧化碳增压路径优化

IF 4.6 3区 工程技术 Q2 ENERGY & FUELS
Gcinisizwe Msimisi Dlamini , Philip Loldrup Fosbøl , Kenneth Ness , Eryk Remiezowicz , Svein-Erik Losnegård , Nicolas von Solms
{"title":"海上输送管道二氧化碳增压路径优化","authors":"Gcinisizwe Msimisi Dlamini ,&nbsp;Philip Loldrup Fosbøl ,&nbsp;Kenneth Ness ,&nbsp;Eryk Remiezowicz ,&nbsp;Svein-Erik Losnegård ,&nbsp;Nicolas von Solms","doi":"10.1016/j.ijggc.2023.103943","DOIUrl":null,"url":null,"abstract":"<div><p>To maximise economies of scale of future CO<sub>2</sub> transport infrastructure, new CO<sub>2</sub> pipelines within the carbon capture utilisation and storage (CCUS) value chain, should ideally have excess capacity to satisfy future transportation demand. However, in scenarios where booster compressors cannot be employed along the pipeline, the rise in pipeline mass flow rate over time culminates in higher energy consumption of upstream compression/liquefaction. This work explores the optimisation of various CO<sub>2</sub> pressurisation pathways and assesses their flexibility in handling a variability in pipeline mass flow rates whilst delivering a captured CO<sub>2</sub> stream at a fixed final pressure of 100 barg. The study is based on the Dunkirk 3D Project, which has a planned nameplate capture capacity of 1 MtCO<sub>2</sub>/y, with other CO<sub>2</sub> point sources taking up additional pipeline utilisation capacity. Two categories of CO<sub>2</sub> pressurisation pathways are considered, gas compression and subcritical liquefaction and pumping. These pathways are optimised to enable a fair comparison, considering the number of compression stages, compression ratio, and cooling/liquefaction system. Modelling results indicate that the temperature of the cooling utility has the greatest influence in reducing the overall work duty and sensitivity to a variability in pipeline mass flow rate. Furthermore, the utilisation of 5 °C seawater as a cooling and liquefaction utility reduces the work duty of the conditioning process by 25.4% and requires fewer compression stages relative to conventional gas compression utilising cooling water at 30 °C.</p></div>","PeriodicalId":334,"journal":{"name":"International Journal of Greenhouse Gas Control","volume":"128 ","pages":"Article 103943"},"PeriodicalIF":4.6000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimisation of carbon dioxide pressurisation pathways for pipeline offshore delivery\",\"authors\":\"Gcinisizwe Msimisi Dlamini ,&nbsp;Philip Loldrup Fosbøl ,&nbsp;Kenneth Ness ,&nbsp;Eryk Remiezowicz ,&nbsp;Svein-Erik Losnegård ,&nbsp;Nicolas von Solms\",\"doi\":\"10.1016/j.ijggc.2023.103943\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>To maximise economies of scale of future CO<sub>2</sub> transport infrastructure, new CO<sub>2</sub> pipelines within the carbon capture utilisation and storage (CCUS) value chain, should ideally have excess capacity to satisfy future transportation demand. However, in scenarios where booster compressors cannot be employed along the pipeline, the rise in pipeline mass flow rate over time culminates in higher energy consumption of upstream compression/liquefaction. This work explores the optimisation of various CO<sub>2</sub> pressurisation pathways and assesses their flexibility in handling a variability in pipeline mass flow rates whilst delivering a captured CO<sub>2</sub> stream at a fixed final pressure of 100 barg. The study is based on the Dunkirk 3D Project, which has a planned nameplate capture capacity of 1 MtCO<sub>2</sub>/y, with other CO<sub>2</sub> point sources taking up additional pipeline utilisation capacity. Two categories of CO<sub>2</sub> pressurisation pathways are considered, gas compression and subcritical liquefaction and pumping. These pathways are optimised to enable a fair comparison, considering the number of compression stages, compression ratio, and cooling/liquefaction system. Modelling results indicate that the temperature of the cooling utility has the greatest influence in reducing the overall work duty and sensitivity to a variability in pipeline mass flow rate. Furthermore, the utilisation of 5 °C seawater as a cooling and liquefaction utility reduces the work duty of the conditioning process by 25.4% and requires fewer compression stages relative to conventional gas compression utilising cooling water at 30 °C.</p></div>\",\"PeriodicalId\":334,\"journal\":{\"name\":\"International Journal of Greenhouse Gas Control\",\"volume\":\"128 \",\"pages\":\"Article 103943\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Greenhouse Gas Control\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1750583623001135\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Greenhouse Gas Control","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1750583623001135","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

为了使未来二氧化碳运输基础设施的规模经济最大化,碳捕集利用和封存(CCUS)价值链中的新二氧化碳管道,理想情况下应该有多余的容量来满足未来的运输需求。然而,在不能沿管道使用增压压缩机的情况下,随着时间的推移,管道质量流量的增加最终导致上游压缩/液化能耗的增加。这项工作探索了各种二氧化碳加压途径的优化,并评估了它们在处理管道质量流量变化时的灵活性,同时以固定的100巴的最终压力输送捕获的二氧化碳流。该研究基于敦刻尔克3D项目,该项目计划的铭文捕获能力为100万吨二氧化碳/年,其他二氧化碳点源占用额外的管道利用能力。考虑了两类二氧化碳增压途径,气体压缩和亚临界液化和泵送。考虑到压缩级的数量、压缩比和冷却/液化系统,这些路径经过优化,可以进行公平的比较。模拟结果表明,冷却装置的温度对降低总体工作负荷和对管道质量流量变化的敏感性影响最大。此外,利用5°C海水作为冷却和液化工具,可将调节过程的工作量减少25.4%,并且与使用30°C冷却水的传统气体压缩相比,所需的压缩阶段更少。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimisation of carbon dioxide pressurisation pathways for pipeline offshore delivery

To maximise economies of scale of future CO2 transport infrastructure, new CO2 pipelines within the carbon capture utilisation and storage (CCUS) value chain, should ideally have excess capacity to satisfy future transportation demand. However, in scenarios where booster compressors cannot be employed along the pipeline, the rise in pipeline mass flow rate over time culminates in higher energy consumption of upstream compression/liquefaction. This work explores the optimisation of various CO2 pressurisation pathways and assesses their flexibility in handling a variability in pipeline mass flow rates whilst delivering a captured CO2 stream at a fixed final pressure of 100 barg. The study is based on the Dunkirk 3D Project, which has a planned nameplate capture capacity of 1 MtCO2/y, with other CO2 point sources taking up additional pipeline utilisation capacity. Two categories of CO2 pressurisation pathways are considered, gas compression and subcritical liquefaction and pumping. These pathways are optimised to enable a fair comparison, considering the number of compression stages, compression ratio, and cooling/liquefaction system. Modelling results indicate that the temperature of the cooling utility has the greatest influence in reducing the overall work duty and sensitivity to a variability in pipeline mass flow rate. Furthermore, the utilisation of 5 °C seawater as a cooling and liquefaction utility reduces the work duty of the conditioning process by 25.4% and requires fewer compression stages relative to conventional gas compression utilising cooling water at 30 °C.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
9.20
自引率
10.30%
发文量
199
审稿时长
4.8 months
期刊介绍: The International Journal of Greenhouse Gas Control is a peer reviewed journal focusing on scientific and engineering developments in greenhouse gas control through capture and storage at large stationary emitters in the power sector and in other major resource, manufacturing and production industries. The Journal covers all greenhouse gas emissions within the power and industrial sectors, and comprises both technical and non-technical related literature in one volume. Original research, review and comments papers are included.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信