Gcinisizwe Msimisi Dlamini , Philip Loldrup Fosbøl , Kenneth Ness , Eryk Remiezowicz , Svein-Erik Losnegård , Nicolas von Solms
{"title":"海上输送管道二氧化碳增压路径优化","authors":"Gcinisizwe Msimisi Dlamini , Philip Loldrup Fosbøl , Kenneth Ness , Eryk Remiezowicz , Svein-Erik Losnegård , Nicolas von Solms","doi":"10.1016/j.ijggc.2023.103943","DOIUrl":null,"url":null,"abstract":"<div><p>To maximise economies of scale of future CO<sub>2</sub> transport infrastructure, new CO<sub>2</sub> pipelines within the carbon capture utilisation and storage (CCUS) value chain, should ideally have excess capacity to satisfy future transportation demand. However, in scenarios where booster compressors cannot be employed along the pipeline, the rise in pipeline mass flow rate over time culminates in higher energy consumption of upstream compression/liquefaction. This work explores the optimisation of various CO<sub>2</sub> pressurisation pathways and assesses their flexibility in handling a variability in pipeline mass flow rates whilst delivering a captured CO<sub>2</sub> stream at a fixed final pressure of 100 barg. The study is based on the Dunkirk 3D Project, which has a planned nameplate capture capacity of 1 MtCO<sub>2</sub>/y, with other CO<sub>2</sub> point sources taking up additional pipeline utilisation capacity. Two categories of CO<sub>2</sub> pressurisation pathways are considered, gas compression and subcritical liquefaction and pumping. These pathways are optimised to enable a fair comparison, considering the number of compression stages, compression ratio, and cooling/liquefaction system. Modelling results indicate that the temperature of the cooling utility has the greatest influence in reducing the overall work duty and sensitivity to a variability in pipeline mass flow rate. Furthermore, the utilisation of 5 °C seawater as a cooling and liquefaction utility reduces the work duty of the conditioning process by 25.4% and requires fewer compression stages relative to conventional gas compression utilising cooling water at 30 °C.</p></div>","PeriodicalId":334,"journal":{"name":"International Journal of Greenhouse Gas Control","volume":"128 ","pages":"Article 103943"},"PeriodicalIF":4.6000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimisation of carbon dioxide pressurisation pathways for pipeline offshore delivery\",\"authors\":\"Gcinisizwe Msimisi Dlamini , Philip Loldrup Fosbøl , Kenneth Ness , Eryk Remiezowicz , Svein-Erik Losnegård , Nicolas von Solms\",\"doi\":\"10.1016/j.ijggc.2023.103943\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>To maximise economies of scale of future CO<sub>2</sub> transport infrastructure, new CO<sub>2</sub> pipelines within the carbon capture utilisation and storage (CCUS) value chain, should ideally have excess capacity to satisfy future transportation demand. However, in scenarios where booster compressors cannot be employed along the pipeline, the rise in pipeline mass flow rate over time culminates in higher energy consumption of upstream compression/liquefaction. This work explores the optimisation of various CO<sub>2</sub> pressurisation pathways and assesses their flexibility in handling a variability in pipeline mass flow rates whilst delivering a captured CO<sub>2</sub> stream at a fixed final pressure of 100 barg. The study is based on the Dunkirk 3D Project, which has a planned nameplate capture capacity of 1 MtCO<sub>2</sub>/y, with other CO<sub>2</sub> point sources taking up additional pipeline utilisation capacity. Two categories of CO<sub>2</sub> pressurisation pathways are considered, gas compression and subcritical liquefaction and pumping. These pathways are optimised to enable a fair comparison, considering the number of compression stages, compression ratio, and cooling/liquefaction system. Modelling results indicate that the temperature of the cooling utility has the greatest influence in reducing the overall work duty and sensitivity to a variability in pipeline mass flow rate. Furthermore, the utilisation of 5 °C seawater as a cooling and liquefaction utility reduces the work duty of the conditioning process by 25.4% and requires fewer compression stages relative to conventional gas compression utilising cooling water at 30 °C.</p></div>\",\"PeriodicalId\":334,\"journal\":{\"name\":\"International Journal of Greenhouse Gas Control\",\"volume\":\"128 \",\"pages\":\"Article 103943\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Greenhouse Gas Control\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1750583623001135\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Greenhouse Gas Control","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1750583623001135","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Optimisation of carbon dioxide pressurisation pathways for pipeline offshore delivery
To maximise economies of scale of future CO2 transport infrastructure, new CO2 pipelines within the carbon capture utilisation and storage (CCUS) value chain, should ideally have excess capacity to satisfy future transportation demand. However, in scenarios where booster compressors cannot be employed along the pipeline, the rise in pipeline mass flow rate over time culminates in higher energy consumption of upstream compression/liquefaction. This work explores the optimisation of various CO2 pressurisation pathways and assesses their flexibility in handling a variability in pipeline mass flow rates whilst delivering a captured CO2 stream at a fixed final pressure of 100 barg. The study is based on the Dunkirk 3D Project, which has a planned nameplate capture capacity of 1 MtCO2/y, with other CO2 point sources taking up additional pipeline utilisation capacity. Two categories of CO2 pressurisation pathways are considered, gas compression and subcritical liquefaction and pumping. These pathways are optimised to enable a fair comparison, considering the number of compression stages, compression ratio, and cooling/liquefaction system. Modelling results indicate that the temperature of the cooling utility has the greatest influence in reducing the overall work duty and sensitivity to a variability in pipeline mass flow rate. Furthermore, the utilisation of 5 °C seawater as a cooling and liquefaction utility reduces the work duty of the conditioning process by 25.4% and requires fewer compression stages relative to conventional gas compression utilising cooling water at 30 °C.
期刊介绍:
The International Journal of Greenhouse Gas Control is a peer reviewed journal focusing on scientific and engineering developments in greenhouse gas control through capture and storage at large stationary emitters in the power sector and in other major resource, manufacturing and production industries. The Journal covers all greenhouse gas emissions within the power and industrial sectors, and comprises both technical and non-technical related literature in one volume. Original research, review and comments papers are included.