{"title":"矿物油脱脂剂的苯暴露评估。","authors":"Marion J Fedoruk, Rod Bronstein, Brent D Kerger","doi":"10.1080/10473220301442","DOIUrl":null,"url":null,"abstract":"<p><p>This study examines benzene emissions from the use of a metal parts washer (\"degreaser\") supplied with a mineral spirits solvent containing either 9 or 58 ppm benzene. Air samples were obtained during a one-hour session of relatively vigorous parts cleaning activity using a degreaser station equipped with wet brush and sprayer attachments and a compressed air hose. Two methods were utilized to assess airborne benzene levels: U.S. EPA TO-14 (summa stainless steel canister) and NIOSH 1501 (charcoal tube). Overall, both methods provided similar results, excepting detection limit differences. The first simulation was performed with recycled solvent (9 ppm benzene in solvent) showing average one-hour airborne benzene levels < or =33 ppbv in the worker's breathing zone and directly above the parts cleaning tank. Average airborne benzene concentrations 18 inches away from the tank were below 2 ppbv during the 60-minute cleaning protocol. The second simulation with benzene-spiked recycled solvent (58 ppm benzene) showed airborne benzene levels averaging 500 ppbv measured over the 60-minute cleaning period in the worker's breathing zone and directly above the tank, while average concentrations 18 inches from the tank perimeter were 63 ppbv. The data indicate that average and peak exposures to airborne benzene were roughly proportional to the solvent benzene content, although the brief peak exposures exhibited greater variance probably related to aerosol generation associated with the use of the brush and/or spraying attachment. Under this selected upper bound exposure simulation, we found that cleaning parts using a recycled mineral spirits-based solvent in an open warehouse setting did not result in exposures in excess of the current occupational exposure limit of 0.5 ppm averaged over 8 hours for solvent benzene content between 9 and 58 ppm.</p>","PeriodicalId":8182,"journal":{"name":"Applied occupational and environmental hygiene","volume":"18 10","pages":"764-71"},"PeriodicalIF":0.0000,"publicationDate":"2003-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/10473220301442","citationCount":"26","resultStr":"{\"title\":\"Benzene exposure assessment for use of a mineral spirits-based degreaser.\",\"authors\":\"Marion J Fedoruk, Rod Bronstein, Brent D Kerger\",\"doi\":\"10.1080/10473220301442\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study examines benzene emissions from the use of a metal parts washer (\\\"degreaser\\\") supplied with a mineral spirits solvent containing either 9 or 58 ppm benzene. Air samples were obtained during a one-hour session of relatively vigorous parts cleaning activity using a degreaser station equipped with wet brush and sprayer attachments and a compressed air hose. Two methods were utilized to assess airborne benzene levels: U.S. EPA TO-14 (summa stainless steel canister) and NIOSH 1501 (charcoal tube). Overall, both methods provided similar results, excepting detection limit differences. The first simulation was performed with recycled solvent (9 ppm benzene in solvent) showing average one-hour airborne benzene levels < or =33 ppbv in the worker's breathing zone and directly above the parts cleaning tank. Average airborne benzene concentrations 18 inches away from the tank were below 2 ppbv during the 60-minute cleaning protocol. The second simulation with benzene-spiked recycled solvent (58 ppm benzene) showed airborne benzene levels averaging 500 ppbv measured over the 60-minute cleaning period in the worker's breathing zone and directly above the tank, while average concentrations 18 inches from the tank perimeter were 63 ppbv. The data indicate that average and peak exposures to airborne benzene were roughly proportional to the solvent benzene content, although the brief peak exposures exhibited greater variance probably related to aerosol generation associated with the use of the brush and/or spraying attachment. Under this selected upper bound exposure simulation, we found that cleaning parts using a recycled mineral spirits-based solvent in an open warehouse setting did not result in exposures in excess of the current occupational exposure limit of 0.5 ppm averaged over 8 hours for solvent benzene content between 9 and 58 ppm.</p>\",\"PeriodicalId\":8182,\"journal\":{\"name\":\"Applied occupational and environmental hygiene\",\"volume\":\"18 10\",\"pages\":\"764-71\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/10473220301442\",\"citationCount\":\"26\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied occupational and environmental hygiene\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/10473220301442\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied occupational and environmental hygiene","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/10473220301442","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Benzene exposure assessment for use of a mineral spirits-based degreaser.
This study examines benzene emissions from the use of a metal parts washer ("degreaser") supplied with a mineral spirits solvent containing either 9 or 58 ppm benzene. Air samples were obtained during a one-hour session of relatively vigorous parts cleaning activity using a degreaser station equipped with wet brush and sprayer attachments and a compressed air hose. Two methods were utilized to assess airborne benzene levels: U.S. EPA TO-14 (summa stainless steel canister) and NIOSH 1501 (charcoal tube). Overall, both methods provided similar results, excepting detection limit differences. The first simulation was performed with recycled solvent (9 ppm benzene in solvent) showing average one-hour airborne benzene levels < or =33 ppbv in the worker's breathing zone and directly above the parts cleaning tank. Average airborne benzene concentrations 18 inches away from the tank were below 2 ppbv during the 60-minute cleaning protocol. The second simulation with benzene-spiked recycled solvent (58 ppm benzene) showed airborne benzene levels averaging 500 ppbv measured over the 60-minute cleaning period in the worker's breathing zone and directly above the tank, while average concentrations 18 inches from the tank perimeter were 63 ppbv. The data indicate that average and peak exposures to airborne benzene were roughly proportional to the solvent benzene content, although the brief peak exposures exhibited greater variance probably related to aerosol generation associated with the use of the brush and/or spraying attachment. Under this selected upper bound exposure simulation, we found that cleaning parts using a recycled mineral spirits-based solvent in an open warehouse setting did not result in exposures in excess of the current occupational exposure limit of 0.5 ppm averaged over 8 hours for solvent benzene content between 9 and 58 ppm.