{"title":"太空电梯:太空研究的新工具。","authors":"Bradley C Edwards","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>The objective has been to develop a viable scenario for the construction, deployment and operation of a space elevator using current or near future technology. This effort has been primarily a paper study with several experimental tests of specific systems. Computer simulations, engineering designs, literature studies and inclusion of existing programs have been utilized to produce a design for the first space elevator. The results from this effort illustrate a viable design using current and near-term technology for the construction of the first space elevator. The timeline for possible construction is within the coming decades and estimated costs are less than $10 B. The initial elevator would have a 5 ton/day capacity and operating costs near $100/lb for payloads going to any Earth orbit or traveling to the Moon, Mars, Venus or the asteroids. An operational space elevator would allow for larger and much longer-term biological space studies at selectable gravity levels. The high-capacity and low operational cost of this system would also allow for inexpensive searches for life throughout our solar system and the first tests of environmental engineering. This work is supported by a grant from the NASA Institute for Advanced Concepts (NIAC).</p>","PeriodicalId":81348,"journal":{"name":"Gravitational and space biology bulletin : publication of the American Society for Gravitational and Space Biology","volume":"16 2","pages":"101-5"},"PeriodicalIF":0.0000,"publicationDate":"2003-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The space elevator: a new tool for space studies.\",\"authors\":\"Bradley C Edwards\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The objective has been to develop a viable scenario for the construction, deployment and operation of a space elevator using current or near future technology. This effort has been primarily a paper study with several experimental tests of specific systems. Computer simulations, engineering designs, literature studies and inclusion of existing programs have been utilized to produce a design for the first space elevator. The results from this effort illustrate a viable design using current and near-term technology for the construction of the first space elevator. The timeline for possible construction is within the coming decades and estimated costs are less than $10 B. The initial elevator would have a 5 ton/day capacity and operating costs near $100/lb for payloads going to any Earth orbit or traveling to the Moon, Mars, Venus or the asteroids. An operational space elevator would allow for larger and much longer-term biological space studies at selectable gravity levels. The high-capacity and low operational cost of this system would also allow for inexpensive searches for life throughout our solar system and the first tests of environmental engineering. This work is supported by a grant from the NASA Institute for Advanced Concepts (NIAC).</p>\",\"PeriodicalId\":81348,\"journal\":{\"name\":\"Gravitational and space biology bulletin : publication of the American Society for Gravitational and Space Biology\",\"volume\":\"16 2\",\"pages\":\"101-5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Gravitational and space biology bulletin : publication of the American Society for Gravitational and Space Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gravitational and space biology bulletin : publication of the American Society for Gravitational and Space Biology","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The objective has been to develop a viable scenario for the construction, deployment and operation of a space elevator using current or near future technology. This effort has been primarily a paper study with several experimental tests of specific systems. Computer simulations, engineering designs, literature studies and inclusion of existing programs have been utilized to produce a design for the first space elevator. The results from this effort illustrate a viable design using current and near-term technology for the construction of the first space elevator. The timeline for possible construction is within the coming decades and estimated costs are less than $10 B. The initial elevator would have a 5 ton/day capacity and operating costs near $100/lb for payloads going to any Earth orbit or traveling to the Moon, Mars, Venus or the asteroids. An operational space elevator would allow for larger and much longer-term biological space studies at selectable gravity levels. The high-capacity and low operational cost of this system would also allow for inexpensive searches for life throughout our solar system and the first tests of environmental engineering. This work is supported by a grant from the NASA Institute for Advanced Concepts (NIAC).